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Abstract—Synthetic aperture radar (SAR) images are often
contaminated by speckle noise, a type of multiplicative noise
resulting from the imaging process. SAR image despeckling is a
crucial preprocessing step for satellite imaging, enhancing image
visualization and facilitating downstream analysis. In this study,
we propose a linear-angular attention transformer network for
SAR despeckling. The approach efficiently captures both local
and global context in linear time within a multiscale transformer-
convolutional neural network architecture. Qur transformer
integrates nonlocal denoising and multiscale feature extraction
in a single model. Using a smoothing loss and fast nonlocal post-
processing, the model achieved a 17% improvement in structural
similarity index, a 61% enhancement in contrast-to-noise ratio,
and an increase above 100% in the equivalent number of looks
metric across three datasets compared to multiple state-of-the-
art baselines, even when trained on a small dataset and for only
13 epochs. Comparison with different multi-head self-attention
mechanisms revealed the effectiveness of linear-angular attention
as a step towards green AI, showing both quantitative and
qualitative performance improvements. Unlike models that rely
on optical images for training and lack domain-specific features
for real SAR despeckling, the proposed network is trained
directly on SAR images in a self-supervised manner.

Index Terms—Deep learning, despeckling, image/signal pro-
cessing, linear-angular attention, natural disasters and hazards,
synthetic aperture radar (SAR).

I. INTRODUCTION

PECKLE is a form of multiplicative noise arising from the
S reflection of radar signals off electromagnetically rough
surfaces. Its presence can lead to several challenges, including
degraded visualization, reduced analysis accuracy, difficulties
in image translation, and interpretation errors. Despeckling of
synthetic aperture radar (SAR) images is a necessary prepro-
cessing step for subsequent satellite image analysis tasks such
as segmentation, object detection, or image fusion [1]], [2],
[3]]. Despeckling enhances the interpretability of SAR images
and improves the performance of downstream algorithms,
including classification, segmentation, and object detection.
Potential real-world applications include disaster monitoring
and management, agriculture and forestry, urban infrastructure
mapping, and climate research [4]].
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To despeckle SAR images fully is challenging due to the
multiplicative nature of speckle noise and the absence of
noise-free ground truth. For a SAR image with the average
number of looks L (radar pulses transmitted and received),
the speckled SAR image can be expressed as

where x is the clean image, y is the speckled image, and n is
the speckle noise distributed as

p(n) = ﬁff’“n’“*le”/@, )
where k = L and 6 = 1/L, so that E[n] = 1, and 6 and k
are the scale and shape parameters of the Gamma distribution
(3.

Recent SAR despeckling approaches have explored entropy-
guided dual wavelet shrinkage and intelligent Bayesian
wavelet thresholding [4], [6]. Supervised models are typically
trained on optical datasets [7], [8]], [9] using synthetic speckle
noise (as in Eq. [2) but suffer from domain mismatch on real
SAR images. While techniques such as pixel-shuffle downsam-
pling [10] are helpful, training on real SAR images remains
essential for domain-specific feature learning. Therefore, this
study presents a model trained on synthetically speckled SAR
images, rather than optical images, for SAR despeckling.

The utility of deep learning in SAR despeckling began
with convolutional neural networks (CNNs) [l1]], later progress-
ing to vision transformers [11]. A multitask framework for
jointly performing despeckling and change detection on dual-
polarization SAR images was proposed in [[12] by integrating
polarization decomposition, spatiotemporal attention, and a
transformer—CNN change detection branch. Vision transform-
ers were effective owing to their global modeling capabil-
ity, albeit at the cost of quadratic complexity. Subsequently,
Shifted Windowed Multi-Head Self-Attention (WMSA or
Swin) Transformers [13]] gained popularity [14], [2] due to
their windowed self-attention mechanism with cross-window
connections, which achieves linear computational complexity
with respect to image size. You et al. [15] introduced a
castling vision transformer with kernel-based linear—angular
multi-head self-attention (LAMSA) to capture global context
more effectively. This design also mitigated the accuracy
drop of kernel-based linear attention compared with vanilla
softmax-based attention while maintaining lower complexity.
In this study, we extend this concept to SAR despeckling by
integrating nonlocal means (NLM) filtering within an LAMSA



oNOYTULT D WN =

Transactions on Geoscience and Remote Sensing

transformer and enhancing detail preservation through a novel
dilated hierarchical regional feature extraction block.

The denoising diffusion probabilistic model is another pop-
ular method for despeckling [[16], [17]. However, training such
a model is computationally expensive and time-consuming
because of the diffusion process involved. Among generative
models, generative adversarial networks have also been used
for SAR despeckling [18], [19], [20]; however, they suffer
from the mode collapse problem. Apart from supervised
models, SAR2SAR [21] employs the Noise2Noise framework
for self-supervised despeckling, addressing temporal variations
in SAR images. MERLIN [22] improves training by using the
real and imaginary components of single-look complex images
as speckle pairs, but this does not fully capture the spatial
correlation of speckle noise. Speckle2Void [23], based on the
Noise2Void framework, leverages blind-spot CNNs to enable
single-image SAR denoising. However, blind-spot CNNs in-
herently restrict the model’s access to complete contextual
information, resulting in a loss of detail in highly textured or
structured regions, typically found in SAR images. In contrast,
the proposed model leverages the complementary strengths of
CNNs for local feature extraction and transformer-based atten-
tion for modeling long-range dependencies. The inclusion of
linear—angular attention further enhances its ability to capture
directional patterns in speckle, while the U-Net architecture
ensures effective multiscale representation, together resulting
in improved despeckling performance.

Despeckling aims to smooth uniform regions while pre-
serving edges. We achieve this by incorporating mean-squared
gradients of the despeckled image (smoothing loss) alongside
L1 loss in the objective function. Additionally, a fast nonlocal
filtering post-processing step further enhances performance,
mitigating artifacts that arise from training on real SAR im-
ages. The application of LAMSA offers computational benefits
consistent with the principles of green Al by reducing resource
usage while maintaining performance.

The work makes the following contributions:

o We propose a multiscale neural network with nonlocal
means transformers that efficiently capture global and
local context through linear—angular attention for SAR
image despeckling. Unlike prior approaches, the model
is trained on synthetically speckled SAR images, elimi-
nating the need for clean ground truth.

o A dilated hierarchical regional feature extraction block
operates in parallel with the transformer to enhance fine
features in the despeckled SAR image and compensate
for the sparse regularization required by LAMSA.

« A fast nonlocal filtering-based post-processing strategy is
applied to remove artifacts caused by direct training on
real SAR images. The model outperforms state-of-the-art
methods in contrast preservation and speckle suppression,
achieving a 17% improvement in structural similarity
index, a 61% enhancement in contrast-to-noise ratio, and
over a 100% increase in the equivalent number of looks
across three datasets.

e The use of LAMSA is a step towards green Al, as it
requires less training and inference time, fewer training
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Fig. 1. The proposed model. The ConvTrans block is shown in detail in Fig.

parameters, and O (V) self-attention computation compa-
rable to most other multi-head self-attention mechanisms.

II. METHODOLOGY
A. Preliminaries of Linear-Angular Attention

In transformers, self-attention computes correlations among
input tokens using query (Q), key (K), and value (V) vectors,
obtained from linear projections of the tokens with three
learnable weight matrices (WQ, WX and WV):

T
Att(Q, K, V) = softmax(?}iTC ) V, 3)

where d;. is the feature dimension, and softmax(‘?/lid:) rep-
resents token similarity.

Computing the pairwise correlations of N tokens requires
O(N?) complexity. Linear attention decomposes this softmax
similarity function between QQ and K into separate kernel
embeddings, reducing the computational cost from quadratic in
N to quadratic in dj, using the associative property of matrix
multiplication:

Q)Y ¢(K;)TV;,
#(Q) XL, ¢(K;)T

where ¢(-) is a projection function used to approximate
different kernels.

Polynomial, exponential, or RBF kernels measure spatial
similarity. Yorsh and Kovalenko [24] used a learnable feedfor-
ward network as ¢(-). However, the angular kernel measures
spectral angle distance-based similarity, defined as [15]]:

N R <QiaKa’>>
Sim(Q;, K;) =1 - arccos(”Qi” K1) 5)

The angular kernel implicitly maps input data to a high
(potentially infinite) dimensional feature space. This similarity
can be expanded using trigonometric identities and written
as a sum of linear—angular terms and higher-order nonlinear
residual kernels. The linear-angular terms, 3 + %(Q1KJT),
can be computed in O(N) time, while the higher-order
residual terms are approximated using a learnable depthwise
convolution (DWConv) module to capture neighboring-token
dependencies. This simplified similarity score between query
and key is used later in Eq. 0] in Section to derive the
linear—angular attention.

Att(Q, K, V) =

. “4)
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Fig. 2. ConvTrans block containing LAMSA transformer and hierarchical regional feature extraction block.

Nonlocal Mean Filtering: Xiao et al. [3] noted that a trans-
former’s multi-head attention mechanism resembles the NLM
filter, where the query Q and key K represent neighborhood
matrices, and the value V represents pixel intensities. For this
analogy, Q, K, and V must be linearly projected from neigh-
borhood vectors, with softmax-normalized similarity serving
as attention weights. Instead of this direct formulation, we
use a CNN layer to extract local neighborhood features before
projecting them into Q, K, and V, followed by LAMSA
computation. In this way, we integrate convolutional NLM
filtering into the transformer’s embedding process.

B. Model architecture

The schematic block diagram of the proposed network is
presented in Fig. [I] and the corresponding details of the
ConvTrans block and hierarchical regional feature extraction
block are presented in Fig. 2] The model’s backbone is similar
to the SCUNet [14]], which integrates Swin-Conv blocks within
a multiscale U-Net model. WMSA transformers alternate
self-attention between regular and cyclically shifted window
partitioning, thereby reducing complexity from quadratic to
linear. However, their fixed window size limits global feature
capture. Therefore, we have replaced WMSA attention with
linear—angular multi-head self-attention (LAMSA) to improve
despeckling by efficiently capturing both local and global
features. A dilated hierarchical regional feature extraction

block is included to further enhance multiscale processing.
An ablation study is presented in Section to justify this
selection.

The network comprises an encoder with three strided
convolution-based downsampling modules and a decoder with
three transposed convolution-based upsampling modules, each
with residual connections. Each module contains two Conv-
Trans blocks, with two additional blocks in the U-Net body.
In a ConvTrans block, input feature map X undergoes a 1 x 1
convolution and splits into X; and Xy for transformer and
convolutional processing, respectively. It then concatenates,
passes through another 1 x 1 convolution with a residual
connection to X, and concludes with a ReLU layer.

Linear-Angular Transformer Module: The input feature
map X first passes through a 7 x 7 convolution incorporating
NLM filtering. This convolutional operation effectively per-
forms spatial aggregation over a neighborhood in a learnable
manner, thereby emulating the averaging behavior of tradi-
tional NLMs. The convolutional NLM filtering layer replaces
each pixel with a weighted combination of its neighborhood
pixels, followed by the transformer’s multi-head attention
computation. This CNN layer produces embeddings W X that
capture neighborhood information as a linear combination of
pixel values with the convolutional weight matrix W_.

The embeddings W X are subsequently passed through
three linear layers with weights Wg, Wk, and Wy to
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generate the query Q, key K, and value V feature maps as
defined below:

Q=WoW.X, (6)
K=WiW.X, )
V=W, WX, @)

where W, Wi, Wy, are weight matrices. Query Q, key K,
and value V are labeled within the LAMSA block in Fig. [2]
The LAMSA is computed on normalized Q, K as

Awa(Q K, V) = Sim(Q,K) - V

=1V + 1QK"V +WpwcV,
where the first two terms correspond to the linear and
angular similarity components computed through tensor
multiplications between Q and K, followed by weighting of
V. The higher-order residual term WpwcV is implemented
using a depthwise convolution layer, as shown in Fig. 2| The
simplified Sim(Q,K) is used as described in Section [[I-A]
The complexity to compute Eq. 0] is O(N).

(€))

Hierarchical Regional Feature Extraction Block: This
block comprises a multiscale CNN with three convolutional
layers, each with a 3 x 3 convolution, batch normalization,
leaky ReL.U, and dropout, applied with 1, 2, and 4 dilation
rates.

Objective Function: Speckle noise in SAR images causes
high-intensity fluctuations. Therefore, L1 loss, which is robust
to outliers, is used here. Additionally, a smoothing loss based
on the mean squared gradient of the despeckled image helps
smooth homogeneous regions. The smoothing loss can be
written as

1 .
L1 = NZLL%J 7Sﬂiyj| (10)
5]

1 A . " .
Lsmooth = N Z ((Rig1,y — i)+ (Eiger — 2ij)?)
)
(11)
where Z; ; is the despeckled pixel intensity at (z,7) and x; ;

is the real SAR pixel intensity at (i, 7). Therefore, the total
loss is

Ltotal = /\1L1 + )\2Lsm00th7 (12)

where A\; = 1 and A2 = 0.001 are determined heuristically
to prevent excessive smoothing and edge loss. We performed
experiments with different combinations of loss functions,
and this was our final objective function. The performance of
other loss functions is summarized in Section [IIzAl

Finally, as a post-processing step, the model’s de-
speckled output was refined using the Fast Non-Local
Means (FastNLM) filter [25] to remove artifacts from
direct SAR image training. The implementation utilized
Python’s findpeaks library in conjunction with OpenCV’s
fastNlMeansDenoising and was tested with various
window sizes. The final window size was set to 5 after
empirical optimization.

4

Algorithm 1 Proposed SAR Image Despeckling Algorithm
1: Input: Speckled SAR images

: Output: Despeckled SAR images

: Step 1: Preprocessing

: Convert images to grayscale.

: Normalize pixel intensities to [0, 1].

: Square intensities to enhance differences.

: Resize images to 256 x 256.

: Step 2: Neural Network

: Pass each image through the model (Fig. [I).

. At each resolution level, apply two ConvTrans blocks:
Apply 1 x 1 convolution to input feature map X.
Split input into two branches:

Transformer branch (X7): NLM filtering + LAMSA

(Fig. [2).

14: Convolutional branch (X5): hierarchical feature ex-

traction.

15:  Concatenate X; and Xo.

16:  Apply 1 x 1 convolution on concatenated features.

17:  Add residual connection with X.

18:  Apply ReLU activation.

19: Step 3: Post-processing

20: Apply FastNLM filtering to the output.

21: Return the final despeckled image.

O 00 N1 AN L AW

—_ = = =
W N = O

C. Competing Methods

We compared our results with the following two state-of-
the-art models, which have demonstrated superior despeckling
performance.

1) SAR transformer [I1|]: Perera et al. introduced a novel
transformer-based network for despeckling SAR images. The
network incorporated a transformer-based encoder. The net-
work was trained end-to-end using synthetically generated
speckled images with a composite Lo and total variation
loss function. This SAR transformer model outperformed
several nonlocal filters and CNN-based methods [[L1], such as
probabilistic patch-based denoising [26], block-matching 3D
algorithm, wavelet-domain shrinkage-based SAR denoising
[27], SAR-CNN [28], and Image Despeckling CNN [1].

2) SCUNet [14|]: Zhang et al. proposed the Swin-Conv-
UNet architecture, which integrates residual convolutional
layers for local feature modeling with Swin transformer blocks
for nonlocal context representation. Wang et al. employed
Swin Transformers and residual CNNs to improve despeckling
of SAR images [2]. The Swin Conv block consisted of a
residual convolutional block for extracting local features and a
WMSA block for capturing long-range dependencies. A pixel-
shuffle downsampling post-processing strategy was used to
address spatially correlated real SAR speckle. The original
SCUNet employed an L, loss only and outperformed multiple
strong baselines, such as neural nearest neighbors networks
[29], nonlocal recurrent network-based image restoration [30],
and Restormer [31], in practical blind image denoising.

Page 4 of 22
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Fig. 3. Ablation study results with different modules deactivated. The region inside the red box is zoomed in below each image.
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Fig. 4. Ablation study results with different loss function combinations. Zoomed-in portions show smoothing effect in different loss functions.

D. Datasets and Modeling Details

Datasets: We used three public datasets in this study. (1)
Sentinel-1 SAR images across the globe in spring from the
Technical University of Munich [32]], (2) Sentinel-1 SAR
images specifically in the Himalayas throughout the year
from 2014 to 2024 collected from Google Earth Engine, and
(3) PALSAR-2 ScanSAR HH polarized SAR images across
the globe from 2014 to 2024 from Google Earth Engine. The
model was trained on a dataset consisting of 162 training, 50
validation, and 144 test images.

Data Preprocessing: For fair comparison across models,
all images were converted to single-channel grayscale,
normalized (pixel intensity in [0,1]), squared (to enhance
intensity differences), and resized to 256 x 256. Speckled
images were generated by multiplying the clean image with
simulated Gamma noise, as per Equation [2]

Modeling Parameters: We experimented with learning
rates (1075 to 10~2) and epochs (5 to 50), selecting 1 x 10~*
and 13 epochs via cross-validation. The Adam optimizer
(B1 = 0.5,82 = 0.999) was used with a constant learning
rate because scheduling (e.g., applying a 0.5 decay every
5 epochs) yielded inferior results. The model has 20.5M
parameters, requiring 10 m 40 s to train 13 epochs on

162 images using PyTorch on an Nvidia RTX A6000 GPU
(batch size = 1).

Evaluation Metrics: For quantitative comparison of the
results, we used peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), contrast-to-noise ratio (CNR), and
equivalent number of looks (ENL). The PSNR can be defined
as

IQ
PSNR = 10log;, (ﬁ‘;ﬁ)

where I,ax is the maximum pixel intensity (e.g., 255 for 8-
bit images), and M SE is the mean squared error between the
reference and the despeckled images. Higher PSNR indicates
better image quality with lower distortion.

The SSIM is defined as

(2papy + C1)(204y + C2)

SSIM(z, y) = ,
@) =22+ o2 + 02 4 Ca)

13)

where p and o represent the mean and standard deviation of
images = and y, and Cy,Cy are stability constants. Higher
SSIM indicates better structural similarity and perceptual
quality.

The CNR can be defined as

CNR = M7
op
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Fig. 5. Comparison of the despeckled images obtained from state-of-the-art models on a) Sentinell Global Spring dataset, b) PALSAR2 ScanSAR dataset,
and c) Sentinell Himalaya all seasons dataset. The corresponding contrast-to-noise ratio appears in Table m

where A and B are the foreground and background regions
of interest, respectively, 4 is the mean, and o is the standard
deviation of pixel intensity in the boxes. A higher CNR implies
better edge contrast preservation.

The ENL in a region of interest R in the despeckled SAR
can be defined as
Fh
o%’

ENL =

where higher ENL indicates better noise reduction in homo-
geneous regions.

III. EXPERIMENTAL RESULTS

We validated our model through an ablation study and by
comparing its performance with two strong SOTA baselines
that surpass other CNN and transformer models (refer to
Section [[I-C| and two of their improved versions). Prioritizing
computational efficiency, we excluded denoising diffusion

probabilistic models, which offer marginal gains at signifi-
cantly higher computational costs [17].

A. Ablation Results

The proposed model’s key modules were systematically
deactivated to assess each component’s impact. First, only
the linear—angular attention was retained in the ConvTrans
blocks, and only the L; loss was used. This setup excluded
the regional feature extractor (denoted as reg_feat), smooth-
ing loss (denoted as Lgmoeom), the ReLU activation at the
end of each ConvTrans block (denoted as ReLU), and the
dropout layer at the output of LAMSA transformer block—
the characteristic features differentiating our model from the
SCUNet. Subsequently, the hierarchical feature extractor was
added, and the relevance of each batch normalization layer
was tested by selective deactivation. The ReLLU activation,
smoothing loss, and FastNL post-processing strategies were
then reintroduced sequentially. As shown in Table [[]and Figure

Page 6 of 22
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DATASET, REPORTING PSNR, SSIM, CNR, AND ENL (MEAN =+ STD), WITH TRAINING ON 162 SAMPLES, PER-IMAGE INFERENCE TIME, AND BEST

TABLE I
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ABLATION STUDY ON THE PALSAR-2 SCANSAR DATASET REPORTING PSNR, SSIM, CNR, AND ENL (MEAN = STD), WITH WEIGHTING PARAMETERS

OPTIMAL FOR EACH LOSS AND BEST VALUES BOLDED.

Experiment 1 Different Model Architectures
Models PSNR (1) SSIM (1) CNR (1) ENL (1)
Proposed 27.96 + 0.24 | 0.70 £ 0.06 | 1.57 + 2.39 | 87.33 £ 129.70
w/o reg_feat, ReLU, Lgnooth, FastNL | 28.47 + 0.26 | 0.65 £ 0.08 | 1.29 &+ 1.77 | 69.80 + 86.86
w/o ReLU, Lgmooth, FastNL 2792 £ 0.15 | 0.66 & 0.07 | 0.92 & 1.15 | 38.34 £ 35.34
W/0 Lgmooth, FastNL 28.14 £ 0.28 | 0.69 = 0.06 | 1.24 + 1.64 | 53.66 £ 67.25
w/o FastNL 2797 £0.23 | 0.70 = 0.06 | 1.35 + 1.84 | 66.02 £ 83.97
Experiment 2 Different Loss Functions
Objective Functions PSNR (1) SSIM (1) CNR (1) ENL (1)
Proposed (L1 + 0.001 X Lgmooth) 27.96 & 0.24 | 0.70 £ 0.06 | 1.26 + 2.02 | 98.08 £ 259.52
L1+ 0.00001 X Lgp 27.55 £ 0.13 | 0.63 £0.06 | 1.19 + 1.90 | 85.23 £ 226.00
L1+ 0.001 X LpgNr ssim 2781 £0.18 | 0.68 £ 0.06 | 1.17 & 1.72 | 91.16 £ 248.46
L1+ 0.1 X Lssim 28.03 £ 0.25 | 0.70 £ 0.06 | 1.19 4+ 1.82 | 85.96 £ 212.90
L1 4 0.0000005 x Lty 27.82 £0.23 | 0.66 £ 0.06 | 1.08 & 1.56 | 82.61 £ 228.22
L1 28.15 £ 0.28 | 0.69 &+ 0.06 | 1.07 £ 1.46 | 69.20 &+ 167.22
TABLE II

VALUES BOLDED.

Model PSNR (1) SSIM (1) CNR (1) ENL (1) Training Time | Inference Time | Parameters
Proposed 27.61 + 0.06 | 0.81 & 0.02 | 1.97 £+ 1.57 | 22.99 + 27.27 10m 40s 0.244 s 20.5M
WMSA 27.39 £ 0.05 | 0.78 £ 0.02 | 0.79 + 0.02 | 18.42 £ 19.00 7m 36s 0.110s 214M
FlashMSA | 27.41 £ 0.05 | 0.76 = 0.02 | 1.89 & 1.44 | 20.58 &+ 24.02 70m 48s 8.196s 214M
LRMSA 27.59 £ 0.04 | 0.82 + 0.02 | 1.88 + 1.56 | 19.09 £ 20.89 13m 59s 0.091s 20.5M
ROPEMSA | 27.54 £ 0.06 | 0.79 £ 0.02 | 1.90 £+ 1.47 | 20.01 & 21.44 81m 555 8.260s 20.5M
TABLE III
COMPARISON OF MODELS USING PSNR, SSIM, CNR, AND ENL (MEAN =+ STD), WITH BEST VALUES BOLDED.

Dataset 1 Sentinel-1 Himalaya All Seasons

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.41 4+ 0.07 28.43 + 0.22 28.28 £+ 0.16 28.22 £ 0.14 27.61 £ 0.05

SSIM (1) 0.67 + 0.03 0.73 £+ 0.03 0.73 + 0.02 0.73 + 0.02 0.79 + 0.02

CNR (1) 0.99 + 1.82 0.99 + 1.77 0.37 + 0.56 0.38 + 0.46 1.06 + 1.84

ENL (1) 620.99 + 831.87 262.04 + 323.37 993.99 + 159543 | 859.82 + 1415.07 | 2721.45 + 6125.83

Dataset 2 PALSAR2 ScanSAR HH

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.74 + 0.25 28.47 + 0.26 28.03 £+ 0.27 28.06 + 0.28 27.96 + 0.24

SSIM (1) 0.63 £+ 0.06 0.65 £+ 0.08 0.62 £+ 0.08 0.62 £+ 0.08 0.70 £+ 0.06

CNR (1) 0.50 £+ 0.45 0.58 + 0.44 0.34 £+ 0.40 0.36 = 0.41 0.61 + 0.47

ENL (1) 207.91 + 368.12 128.37 4+ 220.03 206.27 + 373.05 241.52 + 436.17 300.08 + 523.54

Dataset 3 Sentinel-1 Global Spring

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.91 & 0.10 28.07 = 0.12 28.25 + 0.05 28.21 £+ 0.04 28.16 = 0.10

SSIM (1) 0.43 £+ 0.09 0.59 £+ 0.02 0.52 + 0.02 0.53 + 0.02 0.66 + 0.01

CNR (1) 0.38 &+ 0.53 0.54 £+ 0.59 0.43 £+ 0.60 0.38 + 0.45 0.61 + 0.63

ENL (1) 587.96 + 1148.71 | 2201.45 £ 6145.01 | 189.44 £ 474.42 130.10 £ 315.65 20994.17 + 48338.10

our proposed model outperformed all other ablated variants
across evaluation metrics.

As part of the ablation study, we also evaluated other loss
functions and learning rate scheduling strategies, as described
in Section The tested losses are L; loss with multiscale
SSIM loss (Lssmv) [33], total variation loss (Ltv) [34]], gradi-
ent difference loss (Lgp) [35], loss with a linear combination
of PSNR and SSIM called PSNR-SSIM loss (Lpsnr ssiv), and
L, loss. The results appear in Figure ] and Table[I] Figure (s
zoomed-in portions show that due to the use of a smoothing
loss, the despeckled images are much smoother than those
coming from other loss functions. Moreover, the SSIM loss
noticeably worsens performance.

To justify the use of LAMSA for SAR despeckling, we com-
pared it with other commonly used multi-head self-attention
(MSA) mechanisms, including WMSA (as in SCUNet),
FlashMSA [36]], low-rank factorization MSA (LRMSA) [37],
and rotary positional encoding-based MSA (RoPEMSA) [38]].
The quantitative results are summarized in Table |lI} Although
WMSA trained faster, its limited global context made it less
effective for despeckling. LRMSA achieved the second-best
performance and the fastest inference owing to improved token
interactions over a larger context. FlashMSA and LRMSA
primarily optimize the self-attention computation. LAMSA
was selected based on its superior overall performance on the
metrics.



oNOYTULT D WN =

Transactions on Geoscience and Remote Sensing

B. Model Comparison Results

The model comparison results with the SAR transformer
and SCUNet model are shown in Table [IT] and Figure [5} The
qualitative results in Fig. [5] (a) highlight that the proposed
model more effectively restores sharp crucial details, such as
the two building structures, than other competitive models.
One can observe in (b) and (c) that the proposed model
smooths out the homogeneous regions far better than other
models and also keeps clear boundaries between the two
different slopes of the hilly region without smudging the
boundaries.

The quantitative results confirm the model’s performance,
as shown in Table On average, compared to the four
other competitive models, the proposed model achieves a
10.6% improvement in SSIM, a 94.9% enhancement in CNR,
and a 416.7% increase in ENL on the Sentinel-1 Himalaya
all-season dataset. For the PALSAR-2 ScanSAR dataset, it
shows an 11.2% improvement in SSIM, a 44.0% enhancement
in CNR, and a 62.0% increase in ENL. Additionally, the
proposed approach delivers a 29.2% improvement in SSIM,
a 44.0% enhancement in CNR, and a staggering 7835.9%
increase in ENL on the Sentinel-1 Global Spring dataset.
Based on a combined qualitative and quantitative evaluation,
the proposed model outperformed the strong baselines, with
linear computational complexity.

We also experimented with improved versions of the
SCUNet and the SAR transformer. SCUNet’'s WMSA was
replaced with linear—angular attention to retain global contexts
with fast training. (This variant is called SCUNet LA.) How-
ever, the SAR transformer was improved with the introduction
of FastNL-based preprocessing and NLM-based embedding
generation before being fed to the transformer. Even if the
SCUNet LA model’s despeckled SARs mostly yield the best
or second-best quantitative results, it is evident from the
qualitative evaluation of the images in Figure [5 that SCUNet
and SCUNet LA are over-smoothing. The reason may be that
SCUNet was designed for general denoising purposes, for
which multiplicative noise is a special case.

Some statistical tests were conducted to determine whether
the proposed despeckling method significantly outperformed
the four other methods (SCUNet, SCUNet LA, SAR Trans,
and SAR Trans NLM). The Kruskal-Wallis one-way analysis
of variance was used to test if the five despeckling methods
significantly differed from each other on the four evaluation
metrics (PSNR, SSIM, CNR, and ENL) for the three datasets.
A statistically significant (p < 0.05) Kruskal-Wallis one-
way analysis was achieved. Further, multiple comparisons
using the Mann—Whitney U-test were performed with Holm—
Bonferroni-corrected p-values at a significance level of p <
0.012 for four comparisons.

On the Sentinel-1 Himalaya All Seasons dataset, the pro-
posed model provided statistically significant improvements in
SSIM over all other models with a p < 0.00001. On CNR,
the proposed model significantly outperformed SAR Trans
and SAR Trans NLM with p < 0.00001; and on ENL, the
proposed model significantly improved despeckling compared
to SCUNet and SCUNet LA with p-values of 0.00233 and
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0.00056, respectively.

On the PALSAR dataset, the proposed method signifi-
cantly outperformed the four other methods on SSIM with
p < 0.00001. On CNR, the proposed method significantly
outperformed SCUNet with p < 0.00001, SAR Trans with
p = 0.00005, and SAR Trans NLM with p = 0.00015.
On ENL, the proposed method significantly outperformed
SCUNet with p < 0.00001 and SAR Trans with p = 0.00042.

On the Sentinel-1 Global Spring dataset, the proposed
method provided statistically significant improvements in
SSIM compared with all other models with a p < 0.00001.
On CNR, the proposed method exceeded SCUNet with p
< 0.00001, SAR Trans with p = 0.00005, and SAR Trans
NLM with p = 0.00015. On ENL, the proposed method
outperformed SCUNet with p < 0.00001 and SAR Trans NLM
with p = 0.00042. Overall, the proposed method significantly
improved performance on SSIM, CNR, and ENL compared
with the other methods.

Training & Validation Loss

0225} —Validation Loss
—Training Loss

0.2f
0.175}
0.15}

w
80125}

|
01}
0.075}

0.05f
0.025f

0 2 4 6 8 10
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Fig. 6. Training and validation loss vs. epoch curves for the proposed model.

IV. DISCUSSION

Our proposed model’s benefits are (1) self-supervised train-
ing without the need for pristine SAR images (which are
difficult to acquire); (2) training the model with inherently
noisy SAR images to preserve domain-specific features, unlike
any other SAR despeckling models. This is possible because
of the efficient local-global feature extraction capability of
LAMSA, and (3) lower computational complexity, aiming for
greener Al

The cost of an Al model grows with the cost of executing
the model on a single sample (for example, the number of
model parameters), the size of the training dataset, and the
number of hyperparameter experiments [39]. The proposed
model could achieve better performance on SSIM, CNR, and
ENL metrics when trained with a much smaller dataset (about
160 images) for only 13 epochs. Under similar conditions,
SCUNet produces blurry, despeckled images, and the SAR
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transformer produces poor, deformed images, as shown in
Figure [5} The study did not perform an extensive hyperpa-
rameter search for the loss function weights (instead adopting
conventionally used loss term weights), as that was neither
our primary goal nor sustainable for green AI [39]]. The
number of model parameters of the proposed model (20.5 M)
is substantially less compared with the SAR transformer
(25.3M). It takes about three days to train SCUNet on four
NVIDIA RTX 2080 Ti GPUs. The proposed model can be
trained using a single NVIDIA RTX A6000 GPU in 10
m 40 s, yielding perceptually satisfying despeckling results.
Figure [6] shows parallel decreasing trends without divergence,
indicating that the model generalizes well with no evidence
of overfitting within these epochs. The lower validation loss
relative to training loss is due to regularization (e.g., weight
decay, dropout) and differences in dataset characteristics [40].
Evaluating model performance posed some challenges. Due
to the unavailability of clean ground truth SAR images, the
training dataset was created by pairing real SAR images with
noise-added images. The PSNR and SSIM metrics require a
reference or ground-truth image. These metrics were calcu-
lated between the real SAR image and the despeckled image.
Due to the inherent noise present in the reference SAR image,
the PSNR metric is not a reliable indicator. Although PSNR
values are presented in the tables, the proposed method has
not outperformed the others on PSNR for the same reason.
The SSIM metric is more reliable because it reflects the
structural and perceptual similarity. Non-reference metrics
like CNR and ENL are better as they are calculated solely
from the despeckled image. CNR and ENL values are highly
dependent on the choice of position and size of foreground and
background boxes. For CNR, the background box must contain
a homogeneous region, and the foreground box should contain
high-frequency details. For ENL, the region of interest must be
homogeneous, as ENL concerns the smoothness of the image.
For each experimental result reported in the ablation study
and the model comparison tables, different background and
foreground boxes for CNR and ENL are chosen heuristically
to present the superior values of CNR and ENL metrics.
Apart from quantitative performance evaluation, we also
rely on qualitative visualization. The zoomed-in areas in all
the figures show that the despeckled image output from the
proposed model not only gets a smooth texture, but also
preserves edges and finer details, unlike the other methods.
The despeckled image output from the model was further
filtered using the FastNLM filter [25] to eliminate artifacts
generated by direct training on SAR images. This algorithm
replaces the window similarity with pixel intensity similar-
ity at each level in the multiresolution pyramid structure,
filtering out non-similar pixels within a neighborhood. We
experimented with different window sizes for the FastNLM
filtering step (3 to 15, with a step size of 1) while applying it
as a post-processing step. We also directly applied FastNLM
filtering on noisy images to check whether a deep learning
model is even necessary.
One interesting observation is that the PSNR and SSIM
values between the ground truth and noisy images are the
same as those between the ground truth and FastNLM filtered

Transactions on Geoscience and Remote Sensing
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Fig. 7. (a) A reference image with speckle noise is presented. The correspond-
ing despeckled images obtained for qualitative comparisons using (b) direct
FastNLM filtering, (c) the proposed model without FastNLM filtering, and
(d) the proposed model with FastNLM filtering. Zoomed-in regions compare
despeckling quality and structural detail preservation.

images of different window sizes. In contrast, when FastNLM
is applied as a post-processing step of our proposed model,
the PSNR increases (indicating more denoising) and the SSIM
decreases (indicating more smoothing, which results in the loss
of details). Also, the appearance of the directly FastNLM fil-
tered image is smudged at the edges, whereas it is continuous
for the proposed model. Thus, applying FastNLM as post-
processing is more effective than using it standalone. Based
on a qualitative comparison and SSIM, CNR, and ENL values,
we selected a window size of 5 for application in the FastNLM
post-processing step. For the direct application of FastNLM to
the noisy image, a filter size of 15 yields superior performance;
however, it still falls short of the proposed model’s results.

Figure[7|compares image quality when using only FastNLM
filtering versus applying it after the proposed despeckling algo-
rithm. The NLM-filtered image reduces granular noise while
preserving fine structural details such as edges and texture
boundaries. The filtering leads to cleaner homogeneous areas,
well-maintained linear features, and fewer speckle artifacts,
producing a visually coherent image and clearly demonstrat-
ing an improvement in human-perceived image quality. For
example, in the zoomed-in region of Fig.[7[d), the high-altitude
mountain ridgeline is clearly visible with substantially reduced
speckle noise. Homogeneous regions, such as slopes and flat
terrain, appear smooth due to effective noise suppression,
while crucial linear details like rivers are preserved.

In the linear—angular attention block, as described in [15],
a sparse masked softmax-based attention can capture con-
nections to nonadjacent tokens, but it quickly converges to
all zeros as the training progresses, leaving it unused for a
considerable training duration. Additionally, we aimed to avoid
the costly softmax-based attention calculation; therefore, we
eliminated this term. The experimental results supported this
decision, yielding better results without the sparse regulariza-
tion term.

The hierarchical regional feature extraction block was added
to capture features at multiple scales. This integration provided
an alternative to computationally intensive sparse regulariza-
tion. The ReLU at the end of the ConvTrans block creates
sparse activation by suppressing any negative contribution
through the residual connection, thus acting as an implicit
regularizer and improving overall performance.

Among the various loss functions tested, only the combi-
nation of Ly + Lgneom performed well for despeckling be-
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cause this balances noise suppression and detail preservation.
Lssiv focuses on perceptual similarity but does not explic-
itly suppress noise, often retaining noise-like high-frequency
details. Lty enforces smoothness but can excessively blur
fine textures, degrading important details, like those observed
in the SAR transformer. Lgp, which enforces similarity in
image gradients, does not sufficiently reduce speckle noise in
SAR images. Lpsnr ssv does not directly optimize for noise
suppression, as PSNR prioritizes intensity matching while
SSIM emphasizes structural similarity rather than despeckling.
Using only L; loss ensures pixel reconstruction but does not
enforce smoothness, allowing residual noise to persist.

V. CONCLUSION

SAR images require despeckling as a preprocessing step for
various satellite imaging tasks. This study presents an efficient
transformer-based SAR despeckling algorithm that integrates
LAMSA with nonlocal means, capturing both local and global
context in linear time, thereby overcoming the WMSA trans-
former’s local-only limitation. The model outperforms four
strong baselines on SSIM (perceptual and structural similarity
retention), CNR (contrast preservation), and ENL (speckle
suppression) for three datasets without requiring ground-truth
references. The results show that LAMSA performs the best
for SAR despeckling because of its sensitivity to angular
orientation. We envision that the proposed model will be
a greener approach to performing SAR despeckling with
multiple use cases.
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Abstract—Synthetic aperture radar (SAR) images are often
contaminated by speckle noise, a type of multiplicative noise
resulting from the imaging process. SAR image despeckling is a
crucial preprocessing step for satellite imaging, enhancing image
visualization and facilitating downstream analysis. In this study,
we propose a linear-angular attention transformer network for
SAR despeckling. The approach efficiently captures both local
and global context in linear time within a multiscale transformer-
convolutional neural network architecture. Qur transformer
integrates nonlocal denoising and multiscale feature extraction
in a single model. Using a smoothing loss and fast nonlocal post-
processing, the model achieved a 17% improvement in structural
similarity index, a 61% enhancement in contrast-to-noise ratio,
and an increase above 100% in the equivalent number of looks
metric across three datasets compared to multiple state-of-the-
art baselines, even when trained on a small dataset and for only
13 epochs. Comparison with different multi-head self-attention
mechanisms revealed the effectiveness of linear-angular attention
as a step towards green AI, showing both quantitative and
qualitative performance improvements. Unlike models that rely
on optical images for training and lack domain-specific features
for real SAR despeckling, the proposed network is trained
directly on SAR images in a self-supervised manner.

Index Terms—Deep learning, despeckling, image/signal pro-
cessing, linear-angular attention, natural disasters and hazards,
synthetic aperture radar (SAR).

I. INTRODUCTION

PECKLE is a form of multiplicative noise arising from the
S reflection of radar signals off electromagnetically rough
surfaces. Its presence can lead to several challenges, including
degraded visualization, reduced analysis accuracy, difficulties
in image translation, and interpretation errors. Despeckling of
synthetic aperture radar (SAR) images is a necessary prepro-
cessing step for subsequent satellite image analysis tasks such
as segmentation, object detection, or image fusion [1]], [2],
[3]]. Despeckling enhances the interpretability of SAR images
and improves the performance of downstream algorithms,
including classification, segmentation, and object detection.
Potential real-world applications include disaster monitoring
and management, agriculture and forestry, urban infrastructure
mapping, and climate research [4]].
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To despeckle SAR images fully is challenging due to the
multiplicative nature of speckle noise and the absence of
noise-free ground truth. For a SAR image with the average
number of looks L (radar pulses transmitted and received),
the speckled SAR image can be expressed as

where x is the clean image, y is the speckled image, and n is
the speckle noise distributed as

p(n) = ﬁff’“n’“*le”/@, )
where k = L and 6 = 1/L, so that E[n] = 1, and 6 and k
are the scale and shape parameters of the Gamma distribution
(3.

Recent SAR despeckling approaches have explored entropy-
guided dual wavelet shrinkage and intelligent Bayesian
wavelet thresholding [4], [6]. Supervised models are typically
trained on optical datasets [7], [8]], [9] using synthetic speckle
noise (as in Eq. [2) but suffer from domain mismatch on real
SAR images. While techniques such as pixel-shuffle downsam-
pling [10] are helpful, training on real SAR images remains
essential for domain-specific feature learning. Therefore, this
study presents a model trained on synthetically speckled SAR
images, rather than optical images, for SAR despeckling.

The utility of deep learning in SAR despeckling began
with convolutional neural networks (CNNs) [l1]], later progress-
ing to vision transformers [11]. A multitask framework for
jointly performing despeckling and change detection on dual-
polarization SAR images was proposed in [[12] by integrating
polarization decomposition, spatiotemporal attention, and a
transformer—CNN change detection branch. Vision transform-
ers were effective owing to their global modeling capabil-
ity, albeit at the cost of quadratic complexity. Subsequently,
Shifted Windowed Multi-Head Self-Attention (WMSA or
Swin) Transformers [13]] gained popularity [14], [2] due to
their windowed self-attention mechanism with cross-window
connections, which achieves linear computational complexity
with respect to image size. You et al. [15] introduced a
castling vision transformer with kernel-based linear—angular
multi-head self-attention (LAMSA) to capture global context
more effectively. This design also mitigated the accuracy
drop of kernel-based linear attention compared with vanilla
softmax-based attention while maintaining lower complexity.
In this study, we extend this concept to SAR despeckling by
integrating nonlocal means (NLM) filtering within an LAMSA

Page 12 of 22
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transformer and enhancing detail preservation through a novel
dilated hierarchical regional feature extraction block.

The denoising diffusion probabilistic model is another pop-
ular method for despeckling [[16], [17]. However, training such
a model is computationally expensive and time-consuming
because of the diffusion process involved. Among generative
models, generative adversarial networks have also been used
for SAR despeckling [18], [19], [20]; however, they suffer
from the mode collapse problem. Apart from supervised
models, SAR2SAR [21] employs the Noise2Noise framework
for self-supervised despeckling, addressing temporal variations
in SAR images. MERLIN [22] improves training by using the
real and imaginary components of single-look complex images
as speckle pairs, but this does not fully capture the spatial
correlation of speckle noise. Speckle2Void [23], based on the
Noise2Void framework, leverages blind-spot CNNs to enable
single-image SAR denoising. However, blind-spot CNNs in-
herently restrict the model’s access to complete contextual
information, resulting in a loss of detail in highly textured or
structured regions, typically found in SAR images. In contrast,
the proposed model leverages the complementary strengths of
CNNs for local feature extraction and transformer-based atten-
tion for modeling long-range dependencies. The inclusion of
linear—angular attention further enhances its ability to capture
directional patterns in speckle, while the U-Net architecture
ensures effective multiscale representation, together resulting
in improved despeckling performance.

Despeckling aims to smooth uniform regions while pre-
serving edges. We achieve this by incorporating mean-squared
gradients of the despeckled image (smoothing loss) alongside
L1 loss in the objective function. Additionally, a fast nonlocal
filtering post-processing step further enhances performance,
mitigating artifacts that arise from training on real SAR im-
ages. The application of LAMSA offers computational benefits
consistent with the principles of green Al by reducing resource
usage while maintaining performance.

The work makes the following contributions:

o We propose a multiscale neural network with nonlocal
means transformers that efficiently capture global and
local context through linear—angular attention for SAR
image despeckling. Unlike prior approaches, the model
is trained on synthetically speckled SAR images, elimi-
nating the need for clean ground truth.

o A dilated hierarchical regional feature extraction block
operates in parallel with the transformer to enhance fine
features in the despeckled SAR image and compensate
for the sparse regularization required by LAMSA.

« A fast nonlocal filtering-based post-processing strategy is
applied to remove artifacts caused by direct training on
real SAR images. The model outperforms state-of-the-art
methods in contrast preservation and speckle suppression,
achieving a 17% improvement in structural similarity
index, a 61% enhancement in contrast-to-noise ratio, and
over a 100% increase in the equivalent number of looks
across three datasets.

e The use of LAMSA is a step towards green Al, as it
requires less training and inference time, fewer training
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Fig. 1. The proposed model. The ConvTrans block is shown in detail in Fig.

parameters, and O (V) self-attention computation compa-
rable to most other multi-head self-attention mechanisms.

II. METHODOLOGY
A. Preliminaries of Linear-Angular Attention

In transformers, self-attention computes correlations among
input tokens using query (Q), key (K), and value (V) vectors,
obtained from linear projections of the tokens with three
learnable weight matrices (WQ, WX and WV):

T
Att(Q, K, V) = softmax(?}iTC ) V, 3)

where d;. is the feature dimension, and softmax(‘?/lid:) rep-
resents token similarity.

Computing the pairwise correlations of N tokens requires
O(N?) complexity. Linear attention decomposes this softmax
similarity function between QQ and K into separate kernel
embeddings, reducing the computational cost from quadratic in
N to quadratic in dj, using the associative property of matrix
multiplication:

Q)Y ¢(K;)TV;,
#(Q) XL, ¢(K;)T

where ¢(-) is a projection function used to approximate
different kernels.

Polynomial, exponential, or RBF kernels measure spatial
similarity. Yorsh and Kovalenko [24] used a learnable feedfor-
ward network as ¢(-). However, the angular kernel measures
spectral angle distance-based similarity, defined as [15]]:

N R <QiaKa’>>
Sim(Q;, K;) =1 - arccos(”Qi” K1) 5)

The angular kernel implicitly maps input data to a high
(potentially infinite) dimensional feature space. This similarity
can be expanded using trigonometric identities and written
as a sum of linear—angular terms and higher-order nonlinear
residual kernels. The linear-angular terms, 3 + %(Q1KJT),
can be computed in O(N) time, while the higher-order
residual terms are approximated using a learnable depthwise
convolution (DWConv) module to capture neighboring-token
dependencies. This simplified similarity score between query
and key is used later in Eq. 0] in Section to derive the
linear—angular attention.

Att(Q, K, V) =

. “4)
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Fig. 2. ConvTrans block containing LAMSA transformer and hierarchical regional feature extraction block.

Nonlocal Mean Filtering: Xiao et al. [3] noted that a trans-
former’s multi-head attention mechanism resembles the NLM
filter, where the query Q and key K represent neighborhood
matrices, and the value V represents pixel intensities. For this
analogy, Q, K, and V must be linearly projected from neigh-
borhood vectors, with softmax-normalized similarity serving
as attention weights. Instead of this direct formulation, we
use a CNN layer to extract local neighborhood features before
projecting them into Q, K, and V, followed by LAMSA
computation. In this way, we integrate convolutional NLM
filtering into the transformer’s embedding process.

B. Model architecture

The schematic block diagram of the proposed network is
presented in Fig. [I] and the corresponding details of the
ConvTrans block and hierarchical regional feature extraction
block are presented in Fig. 2] The model’s backbone is similar
to the SCUNet [14]], which integrates Swin-Conv blocks within
a multiscale U-Net model. WMSA transformers alternate
self-attention between regular and cyclically shifted window
partitioning, thereby reducing complexity from quadratic to
linear. However, their fixed window size limits global feature
capture. Therefore, we have replaced WMSA attention with
linear—angular multi-head self-attention (LAMSA) to improve
despeckling by efficiently capturing both local and global
features. A dilated hierarchical regional feature extraction

block is included to further enhance multiscale processing.
An ablation study is presented in Section to justify this
selection.

The network comprises an encoder with three strided
convolution-based downsampling modules and a decoder with
three transposed convolution-based upsampling modules, each
with residual connections. Each module contains two Conv-
Trans blocks, with two additional blocks in the U-Net body.
In a ConvTrans block, input feature map X undergoes a 1 x 1
convolution and splits into X; and Xy for transformer and
convolutional processing, respectively. It then concatenates,
passes through another 1 x 1 convolution with a residual
connection to X, and concludes with a ReLU layer.

Linear-Angular Transformer Module: The input feature
map X first passes through a 7 x 7 convolution incorporating
NLM filtering. This convolutional operation effectively per-
forms spatial aggregation over a neighborhood in a learnable
manner, thereby emulating the averaging behavior of tradi-
tional NLMs. The convolutional NLM filtering layer replaces
each pixel with a weighted combination of its neighborhood
pixels, followed by the transformer’s multi-head attention
computation. This CNN layer produces embeddings W X that
capture neighborhood information as a linear combination of
pixel values with the convolutional weight matrix W_.

The embeddings W X are subsequently passed through
three linear layers with weights Wg, Wk, and Wy to
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generate the query Q, key K, and value V feature maps as
defined below:

Q=WoW.X, (6)
K=WiW.X, )
V=W, WX, @)

where W, Wi, Wy, are weight matrices. Query Q, key K,
and value V are labeled within the LAMSA block in Fig. 2]
The LAMSA is computed on normalized Q, K as

Awa(Q K, V) = Sim(Q,K) - V

=iV +1QK"V + WpweV,
where the first two terms correspond to the linear and
angular similarity components computed through tensor
multiplications between Q and K, followed by weighting of
V. The higher-order residual term WpwcV is implemented
using a depthwise convolution layer, as shown in Fig. [2| The
simplified Sim(Q,K) is used as described in Section [[I-A]
The complexity to compute Eq. 0] is O(N).

(€))

Hierarchical Regional Feature Extraction Block: This
block comprises a multiscale CNN with three convolutional
layers, each with a 3 x 3 convolution, batch normalization,
leaky ReL.U, and dropout, applied with 1, 2, and 4 dilation
rates.

Objective Function: Speckle noise in SAR images causes
high-intensity fluctuations. Therefore, L1 loss, which is robust
to outliers, is used here. Additionally, a smoothing loss based
on the mean squared gradient of the despeckled image helps
smooth homogeneous regions. The smoothing loss can be
written as

1 .
L1 = NZ|£L’17J 7Sﬂiyj| (10)
5]

1 A . " .
Lsmooth = N Z ((Rig1,y — i)+ (Eiger — 2ij)?)
)
(11)
where Z; ; is the despeckled pixel intensity at (z,7) and x; ;

is the real SAR pixel intensity at (i, 7). Therefore, the total
loss is

Ltotal = /\1L1 + )\2Lsm00th7 (12)

where A\; = 1 and A2 = 0.001 are determined heuristically
to prevent excessive smoothing and edge loss. We performed
experiments with different combinations of loss functions,
and this was our final objective function. The performance of
other loss functions is summarized in Section [IIzAl

Finally, as a post-processing step, the model’s de-
speckled output was refined using the Fast Non-Local
Means (FastNLM) filter [25] to remove artifacts from
direct SAR image training. The implementation utilized
Python’s findpeaks library in conjunction with OpenCV’s
fastNlMeansDenoising and was tested with various
window sizes. The final window size was set to 5 after
empirical optimization.

Transactions on Geoscience and Remote Sensing

Algorithm 1 Proposed SAR Image Despeckling Algorithm

1: Input: Speckled SAR images

: Output: Despeckled SAR images

: Step 1: Preprocessing

: Convert images to grayscale.

: Normalize pixel intensities to [0, 1].

: Square intensities to enhance differences.

: Resize images to 256 x 256.

: Step 2: Neural Network

: Pass each image through the model (Fig. [I).

. At each resolution level, apply two ConvTrans blocks:
Apply 1 x 1 convolution to input feature map X.
Split input into two branches:

Transformer branch (X7): NLM filtering + LAMSA

(Fig. [2).

14: Convolutional branch (X5): hierarchical feature ex-

traction.

15:  Concatenate X; and Xo.

16:  Apply 1 x 1 convolution on concatenated features.

17:  Add residual connection with X.

18:  Apply ReLU activation.

19: Step 3: Post-processing

20: Apply FastNLM filtering to the output.

21: Return the final despeckled image.

O 00 N N W B WN

—_ = = =
W N = O

C. Competing Methods

We compared our results with the following two state-of-
the-art models, which have demonstrated superior despeckling
performance.

1) SAR transformer [I1|]: Perera et al. introduced a novel
transformer-based network for despeckling SAR images. The
network incorporated a transformer-based encoder. The net-
work was trained end-to-end using synthetically generated
speckled images with a composite Lo and total variation
loss function. This SAR transformer model outperformed
several nonlocal filters and CNN-based methods [[L1], such as
probabilistic patch-based denoising [26], block-matching 3D
algorithm, wavelet-domain shrinkage-based SAR denoising
[27], SAR-CNN [28], and Image Despeckling CNN [1].

2) SCUNet [14|]: Zhang et al. proposed the Swin-Conv-
UNet architecture, which integrates residual convolutional
layers for local feature modeling with Swin transformer blocks
for nonlocal context representation. Wang et al. employed
Swin Transformers and residual CNNs to improve despeckling
of SAR images [2]. The Swin Conv block consisted of a
residual convolutional block for extracting local features and a
WMSA block for capturing long-range dependencies. A pixel-
shuffle downsampling post-processing strategy was used to
address spatially correlated real SAR speckle. The original
SCUNet employed an L, loss only and outperformed multiple
strong baselines, such as neural nearest neighbors networks
[29], nonlocal recurrent network-based image restoration [30],
and Restormer [31], in practical blind image denoising.
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Fig. 3. Ablation study results with different modules deactivated. The region inside the red box is zoomed in below each image.
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Fig. 4. Ablation study results with different loss function combinations. Zoomed-in portions show smoothing effect in different loss functions.

D. Datasets and Modeling Details

Datasets: We used three public datasets in this study. (1)
Sentinel-1 SAR images across the globe in spring from the
Technical University of Munich [32]], (2) Sentinel-1 SAR
images specifically in the Himalayas throughout the year
from 2014 to 2024 collected from Google Earth Engine, and
(3) PALSAR-2 ScanSAR HH polarized SAR images across
the globe from 2014 to 2024 from Google Earth Engine. The
model was trained on a dataset consisting of 162 training, 50
validation, and 144 test images.

Data Preprocessing: For fair comparison across models,
all images were converted to single-channel grayscale,
normalized (pixel intensity in [0,1]), squared (to enhance
intensity differences), and resized to 256 x 256. Speckled
images were generated by multiplying the clean image with
simulated Gamma noise, as per Equation [2]

Modeling Parameters: We experimented with learning
rates (1075 to 10~2) and epochs (5 to 50), selecting 1 x 10~*
and 13 epochs via cross-validation. The Adam optimizer
(B1 = 0.5,82 = 0.999) was used with a constant learning
rate because scheduling (e.g., applying a 0.5 decay every
5 epochs) yielded inferior results. The model has 20.5M
parameters, requiring 10 m 40 s to train 13 epochs on

162 images using PyTorch on an Nvidia RTX A6000 GPU
(batch size = 1).

Evaluation Metrics: For quantitative comparison of the
results, we used peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), contrast-to-noise ratio (CNR), and
equivalent number of looks (ENL). The PSNR can be defined
as

IQ
PSNR = 10log;, (ﬁ‘;ﬁ)

where I,ax is the maximum pixel intensity (e.g., 255 for 8-
bit images), and M SE is the mean squared error between the
reference and the despeckled images. Higher PSNR indicates
better image quality with lower distortion.

The SSIM is defined as

(2papy + C1)(204y + C2)

SSIM(z, y) = ,
@) =22+ o2 + 02 4 Ca)

13)

where p and o represent the mean and standard deviation of
images = and y, and Cy,Cy are stability constants. Higher
SSIM indicates better structural similarity and perceptual
quality.

The CNR can be defined as

CNR = M7
op
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Fig. 5. Comparison of the despeckled images obtained from state-of-the-art models on a) Sentinell Global Spring dataset, b) PALSAR2 ScanSAR dataset,
and c) Sentinell Himalaya all seasons dataset. The corresponding contrast-to-noise ratio appears in Table m

where A and B are the foreground and background regions
of interest, respectively, 4 is the mean, and o is the standard
deviation of pixel intensity in the boxes. A higher CNR implies
better edge contrast preservation.

The ENL in a region of interest R in the despeckled SAR
can be defined as
Fh
o%’

ENL =

where higher ENL indicates better noise reduction in homo-
geneous regions.

III. EXPERIMENTAL RESULTS

We validated our model through an ablation study and by
comparing its performance with two strong SOTA baselines
that surpass other CNN and transformer models (refer to
Section [[I-C| and two of their improved versions). Prioritizing
computational efficiency, we excluded denoising diffusion

probabilistic models, which offer marginal gains at signifi-
cantly higher computational costs [17].

A. Ablation Results

The proposed model’s key modules were systematically
deactivated to assess each component’s impact. First, only
the linear—angular attention was retained in the ConvTrans
blocks, and only the L; loss was used. This setup excluded
the regional feature extractor (denoted as reg_feat), smooth-
ing loss (denoted as Lgmoeom), the ReLU activation at the
end of each ConvTrans block (denoted as ReLU), and the
dropout layer at the output of LAMSA transformer block—
the characteristic features differentiating our model from the
SCUNet. Subsequently, the hierarchical feature extractor was
added, and the relevance of each batch normalization layer
was tested by selective deactivation. The ReLLU activation,
smoothing loss, and FastNL post-processing strategies were
then reintroduced sequentially. As shown in Table [[]and Figure
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TABLE I
ABLATION STUDY ON THE PALSAR-2 SCANSAR DATASET REPORTING PSNR, SSIM, CNR, AND ENL (MEAN = STD), WITH WEIGHTING PARAMETERS
OPTIMAL FOR EACH LOSS AND BEST VALUES BOLDED.

oNOYTULT D WN =

Experiment 1 Different Model Architectures
Models PSNR (1) SSIM (1) CNR (1) ENL (1)
Proposed 27.96 + 0.24 | 0.70 £ 0.06 | 1.57 + 2.39 | 87.33 £ 129.70
w/o reg_feat, ReLU, Lgnooth, FastNL | 28.47 + 0.26 | 0.65 £ 0.08 | 1.29 &+ 1.77 | 69.80 + 86.86
w/o ReLU, Lgmooth, FastNL 2792 £ 0.15 | 0.66 & 0.07 | 0.92 & 1.15 | 38.34 £ 35.34
W/0 Lgmooth, FastNL 28.14 £ 0.28 | 0.69 = 0.06 | 1.24 + 1.64 | 53.66 £ 67.25
w/o FastNL 2797 £0.23 | 0.70 = 0.06 | 1.35 + 1.84 | 66.02 £ 83.97
Experiment 2 Different Loss Functions
Objective Functions PSNR (1) SSIM (1) CNR (1) ENL (1)
Proposed (L1 + 0.001 X Lgmooth) 27.96 & 0.24 | 0.70 £ 0.06 | 1.26 + 2.02 | 98.08 £ 259.52
L1+ 0.00001 X Lgp 27.55 £ 0.13 | 0.63 £0.06 | 1.19 + 1.90 | 85.23 £ 226.00
L1+ 0.001 X LpgNr ssim 2781 £0.18 | 0.68 £ 0.06 | 1.17 & 1.72 | 91.16 £ 248.46
L1+ 0.1 X Lssim 28.03 £ 0.25 | 0.70 £ 0.06 | 1.19 4+ 1.82 | 85.96 £ 212.90
L1 4 0.0000005 x Lty 27.82 £0.23 | 0.66 £ 0.06 | 1.08 & 1.56 | 82.61 £ 228.22
L1 28.15 £ 0.28 | 0.69 &+ 0.06 | 1.07 £ 1.46 | 69.20 &+ 167.22
TABLE II

COMPARISON OF THE PROPOSED MODEL WITH SELF-ATTENTION BASELINES (NO POST-PROCESSING) ON THE SENTINEL-1 HIMALAYA ALL-SEASON
DATASET, REPORTING PSNR, SSIM, CNR, AND ENL (MEAN =+ STD), WITH TRAINING ON 162 SAMPLES, PER-IMAGE INFERENCE TIME, AND BEST

VALUES BOLDED.

Model PSNR (1) SSIM (1) CNR (1) ENL (1) Training Time | Inference Time | Parameters
Proposed 27.61 + 0.06 | 0.81 & 0.02 | 1.97 £+ 1.57 | 22.99 + 27.27 10m 40s 0.244 s 20.5M
WMSA 27.39 £ 0.05 | 0.78 £ 0.02 | 0.79 + 0.02 | 18.42 £ 19.00 7m 36s 0.110s 214M
FlashMSA | 27.41 £ 0.05 | 0.76 = 0.02 | 1.89 & 1.44 | 20.58 &+ 24.02 70m 48s 8.196s 214M
LRMSA 27.59 £ 0.04 | 0.82 + 0.02 | 1.88 + 1.56 | 19.09 £ 20.89 13m 59s 0.091s 20.5M
ROPEMSA | 27.54 £ 0.06 | 0.79 £ 0.02 | 1.90 £+ 1.47 | 20.01 & 21.44 81m 555 8.260s 20.5M
TABLE III
COMPARISON OF MODELS USING PSNR, SSIM, CNR, AND ENL (MEAN =+ STD), WITH BEST VALUES BOLDED.

Dataset 1 Sentinel-1 Himalaya All Seasons

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.41 4+ 0.07 28.43 + 0.22 28.28 £+ 0.16 28.22 £ 0.14 27.61 £ 0.05

SSIM (1) 0.67 + 0.03 0.73 £+ 0.03 0.73 + 0.02 0.73 + 0.02 0.79 + 0.02

CNR (1) 0.99 + 1.82 0.99 + 1.77 0.37 + 0.56 0.38 + 0.46 1.06 + 1.84

ENL (1) 620.99 + 831.87 262.04 + 323.37 993.99 + 159543 | 859.82 + 1415.07 | 2721.45 + 6125.83

Dataset 2 PALSAR2 ScanSAR HH

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.74 + 0.25 28.47 + 0.26 28.03 £+ 0.27 28.06 + 0.28 27.96 + 0.24

SSIM (1) 0.63 £+ 0.06 0.65 £+ 0.08 0.62 £+ 0.08 0.62 £+ 0.08 0.70 £+ 0.06

CNR (1) 0.50 £+ 0.45 0.58 + 0.44 0.34 £+ 0.40 0.36 = 0.41 0.61 + 0.47

ENL (1) 207.91 + 368.12 128.37 4+ 220.03 206.27 + 373.05 241.52 + 436.17 300.08 + 523.54

Dataset 3 Sentinel-1 Global Spring

Models SCUNet SCUNet LA SAR Trans SAR Trans NLM | Proposed

PSNR (dB) (1) | 27.91 & 0.10 28.07 = 0.12 28.25 + 0.05 28.21 £+ 0.04 28.16 = 0.10

SSIM (1) 0.43 £+ 0.09 0.59 £+ 0.02 0.52 + 0.02 0.53 + 0.02 0.66 + 0.01

CNR (1) 0.38 &+ 0.53 0.54 £+ 0.59 0.43 £+ 0.60 0.38 + 0.45 0.61 + 0.63

ENL (1) 587.96 + 1148.71 | 2201.45 £ 6145.01 | 189.44 £ 474.42 130.10 £ 315.65 20994.17 + 48338.10

our proposed model outperformed all other ablated variants
across evaluation metrics.

As part of the ablation study, we also evaluated other loss
functions and learning rate scheduling strategies, as described
in Section The tested losses are L; loss with multiscale
SSIM loss (Lssmv) [33], total variation loss (Ltv) [34]], gradi-
ent difference loss (Lgp) [35], loss with a linear combination
of PSNR and SSIM called PSNR-SSIM loss (Lpsnr ssiv), and
L, loss. The results appear in Figure ] and Table[I] Figure (s
zoomed-in portions show that due to the use of a smoothing
loss, the despeckled images are much smoother than those
coming from other loss functions. Moreover, the SSIM loss
noticeably worsens performance.

To justify the use of LAMSA for SAR despeckling, we com-
pared it with other commonly used multi-head self-attention
(MSA) mechanisms, including WMSA (as in SCUNet),
FlashMSA [36]], low-rank factorization MSA (LRMSA) [37],
and rotary positional encoding-based MSA (RoPEMSA) [38]].
The quantitative results are summarized in Table |lI} Although
WMSA trained faster, its limited global context made it less
effective for despeckling. LRMSA achieved the second-best
performance and the fastest inference owing to improved token
interactions over a larger context. FlashMSA and LRMSA
primarily optimize the self-attention computation. LAMSA
was selected based on its superior overall performance on the
metrics.
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B. Model Comparison Results

The model comparison results with the SAR transformer
and SCUNet model are shown in Table [IT] and Figure [5} The
qualitative results in Fig. [5] (a) highlight that the proposed
model more effectively restores sharp crucial details, such as
the two building structures, than other competitive models.
One can observe in (b) and (c) that the proposed model
smooths out the homogeneous regions far better than other
models and also keeps clear boundaries between the two
different slopes of the hilly region without smudging the
boundaries.

The quantitative results confirm the model’s performance,
as shown in Table On average, compared to the four
other competitive models, the proposed model achieves a
10.6% improvement in SSIM, a 94.9% enhancement in CNR,
and a 416.7% increase in ENL on the Sentinel-1 Himalaya
all-season dataset. For the PALSAR-2 ScanSAR dataset, it
shows an 11.2% improvement in SSIM, a 44.0% enhancement
in CNR, and a 62.0% increase in ENL. Additionally, the
proposed approach delivers a 29.2% improvement in SSIM,
a 44.0% enhancement in CNR, and a staggering 7835.9%
increase in ENL on the Sentinel-1 Global Spring dataset.
Based on a combined qualitative and quantitative evaluation,
the proposed model outperformed the strong baselines, with
linear computational complexity.

We also experimented with improved versions of the
SCUNet and the SAR transformer. SCUNet’'s WMSA was
replaced with linear—angular attention to retain global contexts
with fast training. (This variant is called SCUNet LA.) How-
ever, the SAR transformer was improved with the introduction
of FastNL-based preprocessing and NLM-based embedding
generation before being fed to the transformer. Even if the
SCUNet LA model’s despeckled SARs mostly yield the best
or second-best quantitative results, it is evident from the
qualitative evaluation of the images in Figure [5 that SCUNet
and SCUNet LA are over-smoothing. The reason may be that
SCUNet was designed for general denoising purposes, for
which multiplicative noise is a special case.

Some statistical tests were conducted to determine whether
the proposed despeckling method significantly outperformed
the four other methods (SCUNet, SCUNet LA, SAR Trans,
and SAR Trans NLM). The Kruskal-Wallis one-way analysis
of variance was used to test if the five despeckling methods
significantly differed from each other on the four evaluation
metrics (PSNR, SSIM, CNR, and ENL) for the three datasets.
A statistically significant (p < 0.05) Kruskal-Wallis one-
way analysis was achieved. Further, multiple comparisons
using the Mann—Whitney U-test were performed with Holm—
Bonferroni-corrected p-values at a significance level of p <
0.012 for four comparisons.

On the Sentinel-1 Himalaya All Seasons dataset, the pro-
posed model provided statistically significant improvements in
SSIM over all other models with a p < 0.00001. On CNR,
the proposed model significantly outperformed SAR Trans
and SAR Trans NLM with p < 0.00001; and on ENL, the
proposed model significantly improved despeckling compared
to SCUNet and SCUNet LA with p-values of 0.00233 and
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0.00056, respectively.

On the PALSAR dataset, the proposed method signifi-
cantly outperformed the four other methods on SSIM with
p < 0.00001. On CNR, the proposed method significantly
outperformed SCUNet with p < 0.00001, SAR Trans with
p = 0.00005, and SAR Trans NLM with p = 0.00015.
On ENL, the proposed method significantly outperformed
SCUNet with p < 0.00001 and SAR Trans with p = 0.00042.

On the Sentinel-1 Global Spring dataset, the proposed
method provided statistically significant improvements in
SSIM compared with all other models with a p < 0.00001.
On CNR, the proposed method exceeded SCUNet with p
< 0.00001, SAR Trans with p = 0.00005, and SAR Trans
NLM with p = 0.00015. On ENL, the proposed method
outperformed SCUNet with p < 0.00001 and SAR Trans NLM
with p = 0.00042. Overall, the proposed method significantly
improved performance on SSIM, CNR, and ENL compared
with the other methods.
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Fig. 6. Training and validation loss vs. epoch curves for the proposed model.

IV. DISCUSSION

Our proposed model’s benefits are (1) self-supervised train-
ing without the need for pristine SAR images (which are
difficult to acquire); (2) training the model with inherently
noisy SAR images to preserve domain-specific features, unlike
any other SAR despeckling models. This is possible because
of the efficient local-global feature extraction capability of
LAMSA, and (3) lower computational complexity, aiming for
greener Al

The cost of an Al model grows with the cost of executing
the model on a single sample (for example, the number of
model parameters), the size of the training dataset, and the
number of hyperparameter experiments [39]. The proposed
model could achieve better performance on SSIM, CNR, and
ENL metrics when trained with a much smaller dataset (about
160 images) for only 13 epochs. Under similar conditions,
SCUNet produces blurry, despeckled images, and the SAR
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transformer produces poor, deformed images, as shown in
Figure [5} The study did not perform an extensive hyperpa-
rameter search for the loss function weights (instead adopting
conventionally used loss term weights), as that was neither
our primary goal nor sustainable for green AI [39]]. The
number of model parameters of the proposed model (20.5 M)
is substantially less compared with the SAR transformer
(25.3M). It takes about three days to train SCUNet on four
NVIDIA RTX 2080 Ti GPUs. The proposed model can be
trained using a single NVIDIA RTX A6000 GPU in 10
m 40 s, yielding perceptually satisfying despeckling results.
Figure [6] shows parallel decreasing trends without divergence,
indicating that the model generalizes well with no evidence
of overfitting within these epochs. The lower validation loss
relative to training loss is due to regularization (e.g., weight
decay, dropout) and differences in dataset characteristics [40].
Evaluating model performance posed some challenges. Due
to the unavailability of clean ground truth SAR images, the
training dataset was created by pairing real SAR images with
noise-added images. The PSNR and SSIM metrics require a
reference or ground-truth image. These metrics were calcu-
lated between the real SAR image and the despeckled image.
Due to the inherent noise present in the reference SAR image,
the PSNR metric is not a reliable indicator. Although PSNR
values are presented in the tables, the proposed method has
not outperformed the others on PSNR for the same reason.
The SSIM metric is more reliable because it reflects the
structural and perceptual similarity. Non-reference metrics
like CNR and ENL are better as they are calculated solely
from the despeckled image. CNR and ENL values are highly
dependent on the choice of position and size of foreground and
background boxes. For CNR, the background box must contain
a homogeneous region, and the foreground box should contain
high-frequency details. For ENL, the region of interest must be
homogeneous, as ENL concerns the smoothness of the image.
For each experimental result reported in the ablation study
and the model comparison tables, different background and
foreground boxes for CNR and ENL are chosen heuristically
to present the superior values of CNR and ENL metrics.
Apart from quantitative performance evaluation, we also
rely on qualitative visualization. The zoomed-in areas in all
the figures show that the despeckled image output from the
proposed model not only gets a smooth texture, but also
preserves edges and finer details, unlike the other methods.
The despeckled image output from the model was further
filtered using the FastNLM filter [25] to eliminate artifacts
generated by direct training on SAR images. This algorithm
replaces the window similarity with pixel intensity similar-
ity at each level in the multiresolution pyramid structure,
filtering out non-similar pixels within a neighborhood. We
experimented with different window sizes for the FastNLM
filtering step (3 to 15, with a step size of 1) while applying it
as a post-processing step. We also directly applied FastNLM
filtering on noisy images to check whether a deep learning
model is even necessary.
One interesting observation is that the PSNR and SSIM
values between the ground truth and noisy images are the
same as those between the ground truth and FastNLM filtered
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Fig. 7. (a) A reference image with speckle noise is presented. The correspond-
ing despeckled images obtained for qualitative comparisons using (b) direct
FastNLM filtering, (c) the proposed model without FastNLM filtering, and
(d) the proposed model with FastNLM filtering. Zoomed-in regions compare
despeckling quality and structural detail preservation.

images of different window sizes. In contrast, when FastNLM
is applied as a post-processing step of our proposed model,
the PSNR increases (indicating more denoising) and the SSIM
decreases (indicating more smoothing, which results in the loss
of details). Also, the appearance of the directly FastNLM fil-
tered image is smudged at the edges, whereas it is continuous
for the proposed model. Thus, applying FastNLM as post-
processing is more effective than using it standalone. Based
on a qualitative comparison and SSIM, CNR, and ENL values,
we selected a window size of 5 for application in the FastNLM
post-processing step. For the direct application of FastNLM to
the noisy image, a filter size of 15 yields superior performance;
however, it still falls short of the proposed model’s results.

Figure[7|compares image quality when using only FastNLM
filtering versus applying it after the proposed despeckling algo-
rithm. The NLM-filtered image reduces granular noise while
preserving fine structural details such as edges and texture
boundaries. The filtering leads to cleaner homogeneous areas,
well-maintained linear features, and fewer speckle artifacts,
producing a visually coherent image and clearly demonstrat-
ing an improvement in human-perceived image quality. For
example, in the zoomed-in region of Fig.[7[d), the high-altitude
mountain ridgeline is clearly visible with substantially reduced
speckle noise. Homogeneous regions, such as slopes and flat
terrain, appear smooth due to effective noise suppression,
while crucial linear details like rivers are preserved.

In the linear—angular attention block, as described in [15],
a sparse masked softmax-based attention can capture con-
nections to nonadjacent tokens, but it quickly converges to
all zeros as the training progresses, leaving it unused for a
considerable training duration. Additionally, we aimed to avoid
the costly softmax-based attention calculation; therefore, we
eliminated this term. The experimental results supported this
decision, yielding better results without the sparse regulariza-
tion term.

The hierarchical regional feature extraction block was added
to capture features at multiple scales. This integration provided
an alternative to computationally intensive sparse regulariza-
tion. The ReLU at the end of the ConvTrans block creates
sparse activation by suppressing any negative contribution
through the residual connection, thus acting as an implicit
regularizer and improving overall performance.

Among the various loss functions tested, only the combi-
nation of Ly + Lgneom performed well for despeckling be-
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cause this balances noise suppression and detail preservation.
Lssiv focuses on perceptual similarity but does not explic-
itly suppress noise, often retaining noise-like high-frequency
details. Lty enforces smoothness but can excessively blur
fine textures, degrading important details, like those observed
in the SAR transformer. Lgp, which enforces similarity in
image gradients, does not sufficiently reduce speckle noise in
SAR images. Lpsnr ssv does not directly optimize for noise
suppression, as PSNR prioritizes intensity matching while
SSIM emphasizes structural similarity rather than despeckling.
Using only L; loss ensures pixel reconstruction but does not
enforce smoothness, allowing residual noise to persist.

V. CONCLUSION

SAR images require despeckling as a preprocessing step for
various satellite imaging tasks. This study presents an efficient
transformer-based SAR despeckling algorithm that integrates
LAMSA with nonlocal means, capturing both local and global
context in linear time, thereby overcoming the WMSA trans-
former’s local-only limitation. The model outperforms four
strong baselines on SSIM (perceptual and structural similarity
retention), CNR (contrast preservation), and ENL (speckle
suppression) for three datasets without requiring ground-truth
references. The results show that LAMSA performs the best
for SAR despeckling because of its sensitivity to angular
orientation. We envision that the proposed model will be
a greener approach to performing SAR despeckling with
multiple use cases.
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