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Abstract—In this article, we propose a hand gesture-operated
system as an Al application to relieve discomfort and restore
function in hand and arm movements caused by injuries and nerve
and muscle complications. The system trains patients with hand
exercises, such as performing hand gestures accurately, traversing
within specified bounds, and operating a hand gesture calculator.
However, the system requires accurate hand gesture detection,
which is impeded by background clutter and variations in illumina-
tion and in the hand’s size and angle. To address this, we developed
arobust hand detection module that uses a single-stage transformer
deep network. The transformer network encodes global informa-
tion and uses bipartite matching to reduce the frequency of spurious
detections. It drives a regression head and a classification head to
localize the hand gesture in a bounding box and assign it a class
label. Hand keypoints are also detected to support drawing, path
traversal, and calculator use. The approach is evaluated on two
benchmark datasets: 1) OUHANDS and 2) NUS. The method yields
89.6% accuracy for OUHANDS and 100% for NUS. These results
indicate that precise hand detection can support a robust system
for rehabilitation through hand exercises. Our experiments confirm
that the users’ hand function progressively improved.

Impact Statement—The proposed system restores hand and arm
function by guiding patients with hand injuries or complications
through therapeutic exercises while detecting their hand gestures.
Hand injuries prevent many individuals from communicating nat-
urally or completing daily tasks without assistance. Visits to a
physical therapist sometimes involve lengthy travel and wait times
for the patient and added costs for the healthcare system. Thus,
the system could significantly contribute to health. Because the
system is vision-based, it is affordable: It does not require specilized
hardware like a data glove—just a computer with a webcam. The
proposed method detects the hand more accurately than state-
of-the-art methods on benchmark datasets. Thus, it overcomes
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drawbacks of vision-based gesture detection, such as degraded
performance in the presence of other people, background clutter,
and illumination variations. In sum, the proposed system is more
convenient and less expensive than its alternatives.

Index Terms—Deep neural network, hand gesture detection,
hand keypoints, human-computer interface, transformers.

I. INTRODUCTION

AND gestures are a way for people to express themselves.

However, discomfort resulting from injuries or pathology
can make communicating or performing daily activities hard.
Physical therapy is an effective method to restore function to
the hand. A system that trains patients to perform simple hand
exercises should help to improve their condition. Thus, a hand
gesture-operated system would be beneficial. For its smooth
operation, accurate hand gestures detection is paramount. There
are various approaches to capturing hand gestures, such as using
data gloves or electromyography. However, these approaches
can feel awkward. They require the user to wear a device that may
limit movement, cause fatigue, and increase discomfort. Hence,
a vision-based approach employing Al techniques was chosen.
Nevertheless, vision has its own challenges, such as variations in
illumination, background clutter, hands of different shapes and
sizes, occlusion, shadows, and shading.

This article proposes an Al system for hand gesture detection,
integrated with a human—computer interface that helps with
physical therapy to improve hand or finger movement. Tremors,
stiffness, spasticity, or injury could impair movement. The in-
terface supports hand gestures that involve certain tasks, such as
finger and wrist movement, traversing paths through arm move-
ment, drawing figures, and operating a touchless calculator. A
patient who has progressed in the gesturing and traversing tasks
is ready to use the calculator, which integrates the previously
mastered gestures. The calculator performs simple mathemat-
ical operations like addition, subtraction, multiplication, and
division. All these tasks require accurate hand detection.

The system has three parts: 1) image capture and processing,
2) hand gesture detection, and 3) hand gesture interface, as
shown in Fig. 1. The image part captures the raw image stream
from the webcam and converts it into an RGB image sequence
using digital image processing techniques like debayering. This
is followed by Gaussian blurring and enhancement to increase
the quality of the image fed to the hand gesture detection
module. The hand detection module has two components: 1)
transformer-based hand gesture detection and 2) convolution
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Fig. 1. Block diagram of the proposed hand gesture-operated system.

pose machine-based hand keypoint detection. The transformer
(encoder—decoder) network receives the feature map from a
backbone architecture and outputs the hand gesture’s classifi-
cation score and bounding box. It predicts the class label by
considering the maximum classification score and the bounding
box coordinates using two feed-forward heads. Finally, the
output of the transformer and hand keypoint localization are
provided to the interface to perform the tasks. Hand keypoint
localization works in parallel with the transformer module and is
required to detect the hand joints. Itis applied in the drawing task
and the calculator’s operation to select arithmetic operations.
Our contributions are listed as follows.

1) We propose a hand gesture operated system to help pa-
tients with hand or arm injuries or complications improve
their movement through therapeutic tasks that address
different muscle groups and motor nerves.

2) This novel vision-based system is the first to integrate a
detection transformer with hand gesture detection, esti-
mating the location of the hand in a frame and its classi-
fication score. We propose a novel combination of hand
gesture detection and hand keypoint localization to enable
patients to operate hand rehabilitation interfaces.

3) For the benchmark datasets, OUHANDS and NUS, our
end-to-end approach outperformed single and two-stage
detection networks and did so just with a single input
modality.

This article is organized as follows: Section II reviews past
work on hand detection. Section III describes our methodology
for hand gesture detection. The system and its operation are
explained in Section IV, while the experimental evaluation
and the results are reported in Section V. Finally, Section VI
concludes this article.

II. RELATED WORKS

Hand localization and gesture classification have drawn sub-
stantial attention in the Al research community over the years
because of their extensive application to human—computer inter-
action (HCI), robotics, virtual and augmented reality, and vehicle
and home automation.

Object Detection: Hand gesture detection is a form of object
detection. Its development has been promoted by the Pascal
VOC [1] and COCO [2] challenges. Pioneering object de-
tection algorithms include region-based convolutional neural
networks (e.g., RCNN [3], fast RCNN [4], faster RCNN [5]) and
you-only-look-once CNNs (e.g., YOLO [6], YOLOv2 [7],

YOLOV3 [8]), single shot multibox detector (SSD) [9], Reti-
naNet [10]. RCNNs comprise two-stage deep architectures that
generate region proposals. These region proposals undergo fur-
ther postprocessing to arrive at the intended results, that is,
classification scores and bounding box coordinates. YOLO,
SSD, and RetinaNet have only a single stage, which makes them
much faster than RCNNSs. Using a single deep neural network,
they generate anchor boxes for feature maps and predict classifi-
cation scores and bounding box coordinates without the need to
generate region proposals. However, they require postprocessing
steps, such as nonmaximal suppression (NMS), hard negative
mining, or both.

To eliminate the need for techniques requiring prior knowl-
edge of regions, anchor generation, NMS, mining, etc., we
explored the use of transformers. Transformers have already
shown success in natural language processing [11] and are being
tested in object detection. A detection transformer (DETR) [12]
employs an end-to-end approach to predict objects using a
bipartite matching procedure. Its simplified pipeline streamlines
detection by eliminating anchor generation and NMS. It lever-
ages the transformer to capture long-range dependencies that
help predict the object’s class label and bounding box accurately.
This approach is also useful for the localization and classification
of hand gestures.

Hand Gesture Detection: Bose et al. [13] experimented with
two deep architectures, faster RCNN, and SSD, and integrated
them with the Inception V2 module for precise and efficient
real-time hand gestures recognition. The faster RCNN model
performed better than the SSD model. However, as a two-stage
detector, faster RCNN requires more computation than a single-
stage network. In [14], a two-step approach to hand detection
and recognition was proposed. The input image is fed to an
object detector network to identify the region of interest, i.e., the
hand, and subsequently to a CNN to classify the gesture. Bao
et al. [15] designed a CNN to classify hand gestures without
using a segmented mask or detection annotations to remove
irrelevant regions. Dadashzadeh et al. [16] incorporated hand
segmentation to detect the region of interest and integrated the
mask generated from the RGB image to recognize hand gestures.
A two-step system was proposed in [17], where a YOLOV3 net-
work localized the hand region, and the gesture was recognized
by a VGG-16 [18] network. In [19], a region-based multiscale
fully connected deep neural architecture was developed, which
simultaneously performed hand classification and bounding box
regression to detect the hand in vehicles and outdoors. Gao
et al. [20] employed 3-D hand pose estimation to recognize
dynamic hand gestures. They combined hand keypoints informa-
tion with depth and RGB data and classified the data using a deep
neural network. Yuan et al. [21] proposed a deep convolutional
network that fused features derived from multiple sensors. They
also developed a novel data glove to obtain motion information
for the arm and knuckles. However, the glove impedes gesturing
and induces fatigue. Moreover, a data glove adds to the system’s
cost and may not be readily available.

We aimed to develop an end-to-end vision-based hand ges-
ture detection system that avoids the drawbacks of a two-step
network and the use of specialized sensors. Specialized sensors
for detecting hand gestures may be expensive and less readily
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Fig. 2. Block diagram depicts the hand gesture detection module.

available for procurement than RGB camera like the ubiquitous
webcam. Moreover, specialized sensors are restricted from use
in certain environments, unlike RGB cameras. Thus, our system
only uses a monocular camera. The camera setup is contactless,
which helps to avoid cumbersome wired sensors that are uncom-
fortable to wear performing rehabilitation tasks. Thus, our novel
approach provides an affordable and convenient way to perform
rehabilitation tasks via vision-based techniques.

III. HAND GESTURE DETECTION

The proposed vision-based hand gesture-operated system
combines hand gesture detection and hand keypoint localization
to guide patients with hand or arm injuries or complications
through rehabilitation exercises/tasks. Its contactless operation
avoids cumbersome wired techniques of monitoring the reha-
bilitation tasks. The seamless operation of the touchless hand
gesture system relies on accurately detecting hand gestures as it
trains the patients to recover normal hand gesturing and finger
movements. In our system, the detection process comprises
locating the hand and classifying the gesture simultaneously,
which is achieved using a detection transformer [12]. The in-
tuition for using a transformer is its ability to capture global
information independently of anchor boxes and NMS. A trans-
former can use the attention mechanism to determine the relation
between a bounding box’s top-left corner and the bottom-right
corner, irrespective of their distance. This section details its
architecture and methodology.

The architecture of the hand detection module is shown in
Fig. 2. It constitutes a ResNet 50 backbone that accepts video
frames as input images and passes the signal along with position
embeddings to the transformer. The backbone captures the local

details of the image, and the transformer network processes
the image in its entirety. A transformer divides an image into
patches to form a sequence. This position embedding indicates
the position of the image patches. The position embeddings are
calculated, as described in [11]. The output from the transformer
is propagated simultaneously to a classification and a regression
head. The classification head consists of a fully connected layer
with softmax, which measures the probability of the hand ges-
ture belonging to each class, i.e., the classification score. The
maximum classification score determines the class label. The
regression head is a multilayer perceptron (MLP), which outputs
the bounding box coordinates of the hand gesture.

A. Transformer Network

For the encoder part of the transformer network, the feature
map from the backbone and the position embedding [11] pro-
duce a source sequence S, which propagates through a multihead
attention (MHA) module and a feed-forward neural network to
produce the encoder output. Six encoder units work sequentially.
Their structure is shown in Fig. 2.

MHA [11] is the backbone of the transformer, and can be
defined as

MHA(S) = [AY(S) @ ... ® A%(S)| MP (1)

where single attention head

ex K,
P Va/n

AD(S) = N K, \
Z]:Ml) 28 ( /fid/;)
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Fig. 3. Block diagram of hand keypoints module.

i represents the query index, and j represents the key-value
index. The query, key, and values of an attention mechanism [11]
are arranged into matrices denoted by @, K, and V, respectively.
M represents the number of attention heads, and d represents
the dimensionality of the embeddings. MP is a projection
matrix. Ny, represents the length of the key-value sequence.
For multihead self-attention, the query sequence equals the
key-value sequence. The self-attention mechanism is intended
to help the model focus on image regions relevant to making
a prediction. It also helps preserve temporal dependencies in
the sequence.

The decoder part has two MHA blocks. The first uses self-
attention, and the second uses encoder—decoder attention. A
target sequence, which is a learned position embedding, is fed
to the first MHA. Then, this signal is passed to the second
MHA with the output of the encoder. There are n embed-
dings, which encode the contextual information of the object
and its relation to the background. The decoder processes this
using a bipartite relation and outputs a signal deciphered by a
feed-forward network to produce bounding box coordinates and
classification scores. Just like the encoder, the decoder also has
six units. For regularization, the encoder—decoder employs layer
normalization and dropout layers.

The feed-forward network comprises an MLP that estimates
the bounding box’s normalized center (centroid) coordinates,
height, and width. A linear layer with softmax activation predicts
the class of the gesture localized by the bounding box.

Loss Function: This detection process generates n bounding
box predictions, which is always greater than the actual number
of bounding boxes (m) for the objects present in the image. As
a result, the ground truth set is padded with n — m “no object”
labels to perform bipartite (one-to-one) matching between the
predicted set (y) and the ground truth set (y*). The optimal
index (Z) of the element in the predicted set, corresponding to
the minimum cost of matching the two sets, is obtained from

= arg min Z

I€S,, i—1

+1.{of # &} Laiou (Bi, Breiy)] -

[—1.{of # &} prsy ()

2

A ground truth set element i is represented as (af, B!), where
ot is the actual class label and B! is the actual bounding box
coordinate. pr(;) (o al) is the predicted class probability of class of
for the 7(4)th indexed element of the predicted set. In (2), {ciou
represents the generalized intersection over union loss between
the actual bounding box B} and predicted bounding box B ()

Sy, is the set containing the indices of the nn (= 100) predictions.

The Hungarian loss function (¢4 )[12] for training the network
is

)= 3 [logps () +1.40tk # 6}

i=1
{Kl fGiou (Bf, Bi’(z)) + K2 {1.AD (Bfa Bf(z))]}
3)
where
B N Bzl |B/f(i) - BN Bl
4 BiBiy) =1- 7
GIOU ( Z( )) B U Bj(i)‘ |Bi(i)‘
4)
fLAD (Bﬁv Bj(i)) =IB: N Bz - ®)

fyap is the least absolute deviation loss and k1, K> € R.

B. Hand Keypoints Module

The hand keypoints module (HKM) is equally essential as the
hand gesture detection module as it trains the patients to achieve
normal arm motion with hand control and movement-based
exercises. The hand keypoints module, inspired by CPM [22],
generates heatmaps for each keypoint of the hand, which are
progressively refined at each stage. The HKM framework is
shown in Fig. 3. The backbone generates a feature map that
is embedded with local information (due to its small receptive
field) and is passed on to the subsequent stage of the module.
There are three stages, which output heatmaps of the 21 hand
keypoints and a background. They are denoted by h$(x)Va €
Xand A € [1,...,K + 1], K = 21. Here, s denotes the stage
of HKM, Where s € {1,2,3}, x denotes the coordinates of the
feature assigned to a keypoint, and A" denotes the set containing
all coordinates (u, v) of an image.

The network includes stages for intermediate supervision,
which uses a stage-heatmap of the keypoints, concatenated with
the intermediate feature map from the backbone and passes it
through subsequent stages to arrive at a more refined heatmap.
This intermediate supervision approach reduces the effect of
vanishing gradients. Moreover, the stages encode global char-
acteristics among the keypoints via a larger receptive field. Thus,
they incorporate more contextual information at each stage,
helping the network predict heatmaps more accurately.

The loss function for training the architecture is given by

T (KJrl)

L= > > ln@-

s=1 r=1 zeX

hT ()13 (6)
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where, h$'T'(z) is the ground truth heatmap generated from the
actual hand keypoint coordinates; keypoints are depicted by
a Gaussian peak N (z,2), and 7 signifies the total number of
stages.

IV. USER INTERFACE

This section explains the integration of the hand gesture
detection module and the hand keypoints localization module
to operate the hand gesture interface. The system’s framework
is shown in Fig. 4.

The interface was developed to help patients with hand and
arm movement impairments resulting from tremor, stiffness,
or muscle or nerve injury. The interface supports simple tasks
like gesturing, tracing, drawing, and operating a calculator,
which use the thenar, hypothenar, and midpalmer muscles. These
muscles are associated with the hand’s abduction, adduction,
extension, flexion, and opposition. The tasks also activate and
train the forearm muscle groups, such as flexor and extensor
muscles, and nerves, such as brachial plexus, radial, ulnar, and
median nerve, resulting in reduced discomfort and increased
stability. The different muscles and nerves activated by the tasks
performed on the interface are shown in Fig. 5. The interface
supports four tasks, as shown in Fig. 6. The user selects a task
by clicking the button. The tasks are listed as follows.

1) Gesture: The objective is to ask the user to perform hand
gestures where the muscles and nerves are activated. The
hand gesture detection module recognizes the gesture
and displays it on the interface with its gesturing score

Hand
Keypoints

Block diagram depicts the hand gesture interface for helping patients with hand and arm movement impairment.

Interface

Y
sysej uoneyiqeysy

@ Gesture based interface . o X

Gesture

Perform a gesture with minimal hand mov-
ements

Hand tracing exercise

Trace

Draw geometrical shapes

Draw

Calculator operated by hand gestures

Application

Fig. 6. First window of the hand gesture-based interface comprising the
components to perform different tasks for users with discomfort in hand and
arm movement.

§ Gesture based interface - o X

Class: C
Score: 77.2%
Trembling: No

Fig. 7. Gesturing interface.

indicating how accurately the user gestured. The bounding
box information determines whether the hand is stable in
one position. If the difference of the bounding box position
in the successive frame exceeds a certain number of pixels
(in this case 25, which was empirically determined), the
trembling status is set to “Yes;” otherwise it is set to “No.”
Fig. 7 shows the gesture interface.

2) Trace: This task aims to train the user to make an arm
movement traversing within a specified boundary. As
shown in Fig. 8, the user is asked to traverse within
two rectangles. The centroid of the hand’s bounding box
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Percentage of proper traversing: 72.1

Tracing interface.

Label: Triangle

Drawing interface.

is used to monitor the movement. Common geometri-
cal shapes are used to train the user to control the arm
movement and, thus, exercise the arm muscles and the
brachial plexus. A performance score is provided to track
improvement in the traversing activity.

Draw: The previous step’s progress is tested in this inter-
face by removing the boundary feedback. Here the user is
asked to draw a geometrical shape, and the shape is labeled
and displayed. The actual shape of the drawn pattern is
superimposed on the pattern. The index finger is used
to draw the shape. Alternatively, the hand bounding box
centroid may be used. Fig. 9 shows the drawing interface.

4) Application: Once the user has progressed in the above

activities, the user can operate the calculator by hand.
Here the user needs to keep the hand stable, or else the
gesture is discarded. Also, the user’s hand needs to traverse
in a specific direction to select the required arithmetic
operation. Here the input feed captured by a webcam is
given to an HKM to generate the hand keypoints. The
keypoints are used to detect the tip of the index finger,
enabling the user to select the desired arithmetic operation.
The interface control block accepts two types of input:
1) the fingertip to select the arithmetic operation and
2) the detected hand gestures (described in the previous
section) to enter the numbers. Numbers and operators
are displayed on the interface, as shown in Fig. 10. The
figure shows that a user selected an operator (‘=") with
the tip of the index finger. Algorithm 1 shows the pseu-
docode for the interface. The values thy and thy are de-
rived empirically, and the other elements of " are obtained
as [thifl, thi] = [thi73 +m — %, thi,Q +m +
%] Here, m is the distance between the symbols,
which is empirically determined. This system operates
smoothly despite background clutter and variations in
illumination. The interface’s output is a string displayed on
the monitor, such as “15 + 10 = 25.” Table I lists symbols
used in Algorithm 1.
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Fig. 10.  Hand gesture operated calculator interface.

TABLE I
SYMBOLS USED IN ALGORITHM 1

IF Image frame
H Height of the image
w Width of the image
number 1, number 2
y Output of the arithmetic operation
A threshold to consider the hand keypoint
for selection of arithmetic operation
A set of intervals containing the spatial
positions of the arithmetic operators
op Arithmetic operators
T1,Y1 Keypoint coordinates of the index finger

V. EVALUATION AND RESULTS

This section covers the experimental evaluation of the system.
It discusses the datasets used, the experiments performed, and
the results obtained. The work was performed in Python on an
Nvidia Tesla P100 GPU. The evaluation involves: an offline part
to detect hand gestures in datasets and an online part to test
the hand gesture interface. To train the hand detection module,
Adam optimization was used with a learning rate of 0.0001 and
a batch size of 2. For data augmentation, random horizontal flip,
random scaling, and random size cropping were adopted.

A. Datasets

There are few datasets for hand gesture detection (localization
+ classification). Moreover, they tend to use depth images,
infrared images, and images generated by radar and other hard-
to-obtain sensors. These datasets are beyond the scope of this
work, as its goal is to address the challenges of a vision-based
recognition system. Hence, the two benchmark datasets that are
used in this work are the following.

1) OUHANDS: The OUHANDS [23] dataset consists of
about 3000 RGB images of hand gestures for ten classes. The
resolution of each image is 480 x 640 pixels. The images were
taken from 23 individuals under complex conditions, such as
background clutter, occlusion, and variations in illumination,
hand size, and pose angle. The dataset also contains segmented
masks of the hand gestures, depth information, and hand bound-
ing box annotations for each image.
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Algorithm 1: Touchless Gesture Interface Application.
Input: I¥ k € [1,00) &I* € RE*W > [*: image frames
with operators overlaid
Output: y = nj ong,0 € {+,—, X, =~} > y: output of
arithmetic operation
1: A < height of the overlaid image + offset
2: T(—{[thgl 1),thQZHZ—1 5}
3:0p [+, —, X, +,=]
4: while [*exists do
5:  keypoints < HKM_Model(I*)
6: x1,y1 = keypoints|index_finger]
7. ifindex_fingerisup & y; < A then
8.
9

for j =1 — len(T) do
ifzy € T[j] & j # len(T') then
o < op[j] & break

10: else if
x1 € T[j] & j =len(T) o + n; o ny & break
11: else continue

12: if y; > A then

13: scores, box « Hand_Detection_M odule(I%)

14: num <— argmax(scores). >num forms ny and ngy
progressively with each iteration

15: if ny & no decided then goto step 10 and display

2) NUSII: The National University of Singapore (NUS) [24]
datasets consist of NUS I, which contains image samples of
hand gestures with a uniform background, and NUS II, which
contains hand gestures captured in challenging environments,
such as in the presence of other humans, background clutter, and
illumination variations. This work performs the evaluation on
NUS II only. This dataset has ten classes with 2000 RGB images
of gestures with background clutter of resolution 160 x 120, and
750 RGB images of gestures with humans in the background of
resolution 320 x 240. However, the hand bounding boxes were
not annotated, which is required for our evaluation. Thus, this
task was performed with Labellmg [25].

B. Training, Results, and Analysis

1) Offline: For training the hand detection model, we used
transfer learning. As each dataset has fewer samples than re-
quired to train a deep neural network, instead of training from
scratch, the pretrained weights of DETR [12] were fine-tuned
by freezing the transformer weights and retraining the classifica-
tion and regression heads. This helps the network learn spatial
hierarchies, that is, universal and repurposable characteristics
of the data, shared with the much larger COCO [2] dataset. The
training process was performed for 50 epochs. The training was
performed with 65% of the data, and the remaining 35% were
equally divided between validation and testing. The testing set
was isolated from the training and validation sets, and no testing
data were exposed during training.

For both datasets, the model’s performance by epoch is
shown in Fig. 11. The NUS model likely performed better
than the OUHANDS model because the former contained fewer

100 . -
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Fig. 11.  Plot showing the validation accuracy score of the detection model for

different epochs during training for the OUHANDS and the NUS datasets.
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predicted label predicted label

(a) (b)

Fig. 12.  Confusion matrix after testing on the (a) OUHANDS dataset and the
(b) NUS dataset.

variations in illumination and hand size. The maximum change
in the hand’s bounding box area for the OUHANDS dataset
was 0.52 square pixels, and the NUS dataset was 0.24 square
pixels, indicating higher scale variability for OUHANDS. Re-
garding illumination, the mean difference between the inten-
sity histogram’s maximum and minimum value for the images
of the datasets was 0.054 and 0.028 for the OUHANDS and
NUS datasets, respectively, which indicates greater variation in
OUHANDS. Based on validation accuracy, the model trained at
the 20th and 35th epoch were used to test the OUHANDS and
NUS datasets, respectively. The validation performance of the
detection model is shown in Fig. 11.

The performance measures for the two datasets are the accu-
racy score and F-score, which are given as

, O M;;
Accuracy = z% 7
CM;;
2 > Z CAI” X2 >, CM;;
F-score = 7o — i L (8)
#C 32 s, oM T > s, Oif,

where C'M denotes the confusion matrix, and #C' denotes the
number of classes. % > CM.i__ signifies average precision,

>, CM;;
and % > % signifies average recall.

The confusion matrices for the two datasets are shown in
Fig. 12. Tables II and III show the performance of the proposed
hand gesture detection model for both datasets. The proposed
method achieves an accuracy of 89.6% for OUHANDS and
100% for NUS. Similarly, the two datasets’ F-scores are 89.9%
and 100%, respectively. These results demonstrate the system’s

effectiveness. The training and testing time details are as follows.
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TABLE II
PERFORMANCE OF THE DETECTION MODEL ON OUHANDS DATASET

[ CLASS [ PRECISION [ RECALL [ F-SCORE ]

A 0.89 1.00 0.94
B 0.82 1.00 0.90
C 0.90 0.9 0.90
D 0.80 0.88 0.84
E 0.87 0.96 0.91
F 0.97 0.60 0.74
H 0.88 0.88 0.88
T 0.92 0.92 0.92
7 1.00 0.98 0.99
K 0.98 0.84 0.90

[ Avg | 0903 | 08% | 089 |

TABLE III

PERFORMANCE OF THE DETECTION MODEL ON NUS DATASET

l CLASS [ PRECISION [ RECALL [ F-SCORE ]

[ All categories | 1 [ 1 [ 1 |

[ Ave ] 1 [ [ 1t ]
TABLE IV

INFERENCE TIME COMPARISON FOR DIFFERENT METHODS

[ Methods | Inference time per image |

Faster RCNN 230 ms
Faster RCNN + CPF 130 ms
Retina Net 64 ms
Bhaumik et al. [26] 6.4s
Sharma et al. [17] 97 ms
Bose et al. [13] 140 ms
Ours 56 ms

Fig. 13. Detection of hand gestures from the OUHANDS dataset in the
presence of a human face (top left), background clutter (top right), illumination
variation (bottom left), and change in hand orientation (bottom right).

1) Training time: for OUHANDS = 7 h, for NUS =5 h.

2) Inference time for a single image = 56 ms.

3) The number of trainable parameters = 41.28 M.

A comparison of the inference times of different methods and
the proposed method is shown in Table IV. Figs. 13 and 14 depict
the accurate localization of the hand gesture via the bounding
box and the classification of the localized gesture.

Robustness: The detection results of the model for input
images with human faces and other objects in the background,
extreme variations in illumination, and hands of different shapes

Fig. 14. Detection of hand gestures from the NUS dataset in the presence
of background clutter (top left), illumination variation (top right), an outdoor
environment (bottom left), and the human face with a different pose angle
(bottom right).

TABLE V
COMPARATIVE STUDY OF THE STATE-OF-THE-ART WORKS AND THE PROPOSED
WORK
\ Papers [ Objective | Dataset [ Acc (%) | F-score (%) |
Dadashzadeh Segmentation
etal. [16] & Classification OUHANDS 878 88.1
Bose etal. [13] Localization &
(two-stage network) Classification NUS 971 97.98
Bose etal. [13] Localization &
(single-stage network) Classification NUS o717 o717
Aditya et al. [27] Classification NUS 94.7 94.26
Pisarady et al. [24] Classification NUS 94.36 94.9
Sharma et al. [17] Classification NUS 96.62 97.43
Bhaumik et al. [26] Classification NUS 97.78 97.28
Sahoo et al. [28] Classification NUS 94.8 94.07
Tan et al. [29] Classification NUS 98.4 98.4
. e OUHANDS 65.1 64.56
Bhaumik et al. [30] Classification NUS 9875 970
Baseline [23] Localization & |-y ANps | 83.25 50
Classification
Retinanet [10] Localization & 55 0Nps | 875 87
Classification
Faster R-CNN4Cp | Localization & NUS 95 95.06
Classification
Faster R-CNN Localization & NUS 93.1 93
Classification
MS-FRCNN Localization & NUS 87 §7.12
Classification
MS-RFCN Localization & NUS 78.23 76.14
Classification
Proposed Work Localization & | OUHANDS 89.6 89.9
P Classification NUS 100 100

and sizes are shown in Figs. 13 and 14 to demonstrate the
method’s detection capability. Even when the hand is not upright
(or affine transformed), it is detected successfully. Detection is
effective because the attention mechanism is trained to attend
to the hand region, making it impervious to background clut-
ter. Moreover, using affine-transformed data and normalization
make the model robust to geometric transformations and varia-
tions in illumination and scales.

State-of-the-Art Comparison: We evaluated the system’s
effectiveness by comparing it with state-of-the-art methods.
Table V shows that the proposed work performs better than
state-of-the-art methods. The proposed work uses only one
input modality, an RGB image. It is a single-stage end-to-end
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TABLE VI
STUDY OF THE EFFECTIVENESS OF THE GESTURING INTERFACE ON FIVE PATIENTS

Observations (out of Ouhands NUS Mean Standard
50 attempts of gesturing) [ PT [ P2 [P3 [ P4 ] P5 PI[P2][P3[P4]P5 deviation

1 1 0 0 2 5 2 2 0 5 2 1.9 1.75

2 1 0 1 8 6 2 4 3 10 10 4.5 3.58

3 5 5 1 10 10 10 10 10 18 22 10.1 5.82

4 6 9 5 18 14 10 15 11 15 25 12.8 5.65

5 8 10 15 22 26 18 22 26 21 32 20 7.05

6 10 19 28 25 25 23 23 30 24 37 244 6.66

7 20 31 27 29 26 35 33 35 30 38 30.4 4.98

8 28 38 31 33 31 34 40 39 35 40 34.9 4.01

9 32 41 38 35 40 39 43 45 40 39 39.2 3.51

10 39 45 42 40 40 41 43 48 45 42 42.5 2.65

The number of successful gesturing out of 50 attempts is shown for each patient, and over the course of 10
observations, a steady improvement is seen. P represents patient.

Fig. 15.  (a) Different instances of hand gesture detection on the video frames.
(b) Frames highlighting keypoints detected.

approach, for which the network’s input is the color image, and
its output is the class prediction and the bounding box coordi-
nates. However, alternative approaches either use a two-stage
network or multiple input modalities. This work also compares
its results with those of a baseline [23] and to other object
detection frameworks [13], as detailed in Table V. The results
demonstrate the system’s reliable performance relative to others.

2) Online: This subsection covers the performance of the
proposed interface. The operation of the interface was explained
in Section I'V. Here the algorithm’s detection capability in online
mode (i.e., using a webcam) is presented. Fig. 15 shows different
instances where the detection was made for the webcam feeds
under varying conditions, such as background clutter, hands of
different shapes and sizes, different subjects, and the presence
of human faces or specular reflection. It also shows the detected
hand keypoints and a subimage with the tip of the index finger.

System’s Effectiveness: Two groups of five South Asian male
patients, aged 20 to 35, with hand and arm movement com-
plications, were considered to interact with the hand gesture
interface. One group was trained in the rehabilitation tasks, and
the other was not trained to study the effect of the gesturing
interface on rehabilitation. Prior approval of IIT Guwahati’s
ethics review board was obtained before data acquisition. The
patients were asked to gesture the ten classes of OUHANDS and
NUS datasets five times. Every three days, an observation was
made, and ten of those observations were recorded to keep track
of the patients’ improvement in gesturing. If they could gesture a
particular class with a gesturing score above 60% and acceptable
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Fig. 16.  Tracing performance for 10 observations.

trembling (i.e., the difference between the hand bounding box is
less than 25 pixels), the gesture would be considered a success.
Thus, 50 attempts were made for each of the ten observations (5
times gesturing X 10 classes = 50 attempts). The findings are
shown in Table VI for the group using the gesturing interface
and in Table VII for the group not using the interface. The
observations in Table VI indicate that the continuous use of the
interface helps patients recover normal gesturing. It also helps
relieve hand stiffness and weakness by guiding hand or finger
movements. However, Table VII suggests that the group that
did not use the interface showed slower recovery. The p-value
for both groups is 0.026, which shows the rehabilitation tasks’
statistical significance.

In addition, a performance score is used to monitor improve-
ment in the user’s path traversal for ten observations. This
is plotted in the graph shown in Fig. 16. Here, the patients’
hand stability is gradually improved owing to their use of the
interface. The patients tend to tremble less and control their
hand movement better through use. This is shown in Fig. 17 too,
where the patients draw a particular shape, and the deviation
from the actual shape’s boundary is observed visually.

The performance score is given by

performance score = Liz1® (&)
n
1, (ze, ye Ri — R
where o = (Te,9e) € (B 2) (10)

0, otherwise.
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TABLE VII
STUDY OF THE PERFORMANCE OF FIVE PATIENTS WHO DID NOT USE THE GESTURING INTERFACE

Observations (out of Ouhands NUS Mean Standard
50 attempts of gesturing) || PT P2 [P3 [P4 [ P5S[[PI[P2[P3[P4]P5 deviation

1 1 1 0 0 0 1 0 0 2 1 0.6 0.66

2 2 1 1 2 2 3 1 0 2 2 1.6 0.8

3 3 3 2 2 3 3 2 1 1 3 2.3 0.78

4 3 5 3 4 5 5 5 2 3 4 3.9 1.04

5 6 9 5 7 8 8 9 7 5 8 7.2 14

6 10 10 8 11 11 12 11 10 11 13 10.7 1.26

7 12 13 10 13 13 15 13 14 14 16 13.3 1.55

8 15 16 13 16 15 15 16 17 16 18 15.7 1.26

9 18 19 16 17 19 19 19 21 20 20 18.8 1.4

10 20 22 19 20 21 21 23 21 24 22 21.3 1.41

The number of successful gesturing out of 50 attempts is shown for each patient and for 10 observations.

P represents patient.

TABLE VIII
NUMBER OF HAND GESTURES ACCURATELY DETECTED IN THE CALCULATOR INTERFACE IN A 20-S INTERACTION
Illumination variation Background clutter
P1(%) [ P2(%) ]| P3(%) | P4(%) [ P5 (%) P1(%) | P2(%) | P3(%) | P4(%) | P5 (%)
0 88.23 100 90 100 94.73 100 100 100 95 95
1 100 100 94.73 100 90 100 100 100 100 100
2 89.47 94.44 84.2 80 100 89.47 90 100 100 95
3 94.73 89.47 94.73 100 88.23 94.73 95 100 89.47 94.73
classes 4 94.73 100 90 95 100 100 100 95 90 89.47
5 100 89.47 95 88.23 88.23 94.73 89.47 88.23 90 100
6 100 90 94.73 100 95 100 90 100 94.73 90
7 94.44 84.2 88.23 80 100 100 95 100 94.73 100
8 100 88.23 100 94.73 100 100 95 88.23 90 100
9 100 89.47 100 90 95 100 100 90 100 100

The patients’ performances were recorded as the rate of accurate detection of the gestures in an environment with variable illumination

and background clutter. P represents patient.

Fig. 17.  Visual observation of the outcome of the draw interface. Improvement
in hand movement is represented in columnwise order (from column 1 to
column 3).

(2, y.) denotes the centroid of the hand bounding box, and num
denotes the total number of centroids of the bounding box that
constitute the path traversed. R; and R, represent the area of
the large and small rectangle, as shown in Fig. 8.

Furthermore, the five patients were asked to interact with the
calculator interface using the ten hand gestures for 20 s each.
They operated this interface once they were confident with the
previous tasks. Their performance was recorded as the rate of

accurately detecting the gestures in Table VIII in an environment
with variable illumination (dim light, bright light, and light from
the side) and background clutter. The classes used in the table
represent the classes in the datasets in their respective order.
However, to represent the decimal number system, they are
replaced by digits. The table indicates the interface recognizes
the gestures accurately in most cases in the two challenging
conditions. Thus, it works seamlessly in the online mode. It
makes reliable inferences while avoiding the need for many
sensors, sensors requiring physical contact with the user, or
sensors restricting the user’s movement. This interface’s purpose
is to verify the hand’s normal functioning using an application
that includes all of the hand rehabilitation tasks. It offers the
usage of a hardware-free calculator. More importantly, using
this interface gives a patient the gratification of regaining normal
hand functioning.

VI. CONCLUSION

This work developed an Al application, i.e., a hand gesture-
operated system interlaced with different activity interfaces,
which helped rehabilitate hand and arm function in patients
with injuries or muscle or nerve conditions. The system’s ef-
fectiveness may be attributed to its accurate detection of hand
gestures. The hand detection mechanism comprises an end-
to-end transformer network (an encoder—decoder deep neural
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network) that outputs the hand gesture’s class label and bounding
box coordinates. The transformer network’s multihead attention
mechanism offers a key advantage over other techniques by
capturing global information while concentrating on “what” and
“where” to localize the hand gestures. The hand gesture local-
ization and classification model outperformed state-of-the-art
approaches when tested on two benchmark datasets. Moreover,
this work includes a hand keypoint detection model that esti-
mates the finger joints’ locations. The index fingertip keypoint
was used to augment hand gesture classification and localization
for interface tasks like drawing shapes or using the calculator.
The results show that the system helped the patients progress
in stabilizing and restoring normal hand and arm functioning.
We plan to extend the system to support more physical therapy
exercises for the hand and arm.
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