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A Hand Gesture-operated System for Rehabilitation
using an End-to-End Detection Framework
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Abstract—We propose a hand gesture-operated system as an
AI application to relieve discomfort and restore function in
hand and arm movements caused by injuries and nerve and
muscle complications. The system trains patients with hand
exercises, such as performing hand gestures accurately, traversing
within specified bounds, and operating a hand gesture calculator.
However, the system requires accurate hand gesture detection,
which is impeded by background clutter and variations in
illumination and in the hand’s size and angle. To address this, we
developed a robust hand detection module that uses a single-stage
transformer deep network. The transformer network encodes
global information and uses bipartite matching to reduce the
frequency of spurious detections. It drives a regression head and
a classification head to localize the hand gesture in a bounding
box and assign it a class label. Hand keypoints are also detected
to support drawing, path traversal, and calculator use. The
approach is evaluated on two benchmark datasets: OUHANDS
and NUS. The method yields 89.6% accuracy for OUHANDS
and 100% for NUS. These results indicate that precise hand
detection can support a robust system for rehabilitation through
hand exercises. Our experiments confirm that the users’ hand
function progressively improved.

Impact Statement— Daily tasks always entail using hands, and
hand gestures are a natural means of communication. However,
any hand injury or complication affects normal hand functioning.
The proposed vision-based hand gesture operated system helps
patients relieve discomfort and restore functionality in hand
and arm movements through an interactive system that suggests
therapeutic exercises. The system simultaneously localizes and
recognizes the hand gestures involved in the exercises and teaches
the appropriate exercise procedure without attending physical
therapy clinics. Even in the presence of background clutter,
illumination variations, and other skin objects, the proposed
method detects the hand more accurately than the state-of-
the-art methods (3% approximately), as demonstrated by its
performance on benchmark public datasets, alleviating the issues
of a vision-based system. As a result, the treatment is simple and
affordable.

Index Terms—Deep neural network, hand gesture detection,
hand keypoints, human-computer interface, transformers.
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Fig. 1. The block diagram of the proposed hand gesture-operated system.

I. INTRODUCTION

HAND gestures are a way for people to express them-
selves. However, discomfort resulting from injuries or

pathology can make communicating or performing daily ac-
tivities hard. Physical therapy is an effective method to restore
function to the hand. A system that trains patients to perform
simple hand exercises should help to improve their condition.
Thus, a hand gesture-operated system would be beneficial.
For its smooth operation, accurate hand gestures detection is
paramount. There are various approaches to capturing hand
gestures, such as using data gloves or electromyography.
However, these approaches can feel awkward. They require
the user to wear a device that may limit movement, cause fa-
tigue, and increase discomfort. Hence, a vision-based approach
employing AI techniques was chosen. Nevertheless, vision has
its own challenges, such as variations in illumination, back-
ground clutter, hands of different shapes and sizes, occlusion,
shadows, and shading.

This paper proposes an AI system for hand gesture detec-
tion, integrated with a human-computer interface that helps
with physical therapy to improve hand or finger movement.
Tremors, stiffness, spasticity, or injury could impair move-
ment. The interface supports hand gestures that involve certain
tasks, such as finger and wrist movement, traversing paths
through arm movement, drawing figures, and operating a
touchless calculator. A patient who has progressed in the ges-
turing and traversing tasks is ready to use the calculator, which
integrates the previously mastered gestures. The calculator
performs simple mathematical operations like addition, sub-
traction, multiplication, and division. All these tasks require
accurate hand detection.

The system has three parts: image capture and processing,
hand gesture detection, and hand gesture interface, as shown in
Fig. 1. The image part captures the raw image stream from the
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webcam and converts it into an RGB image sequence using
digital image processing techniques like debayering. This is
followed by Gaussian blurring and enhancement to increase
the quality of the image fed to the hand gesture detection
module. The hand detection module has two components:
transformer-based hand gesture detection and convolution
pose machine-based hand keypoint detection. The transformer
(encoder-decoder) network receives the feature map from a
backbone architecture and outputs the hand gesture’s classifi-
cation score and bounding box. It predicts the class label by
considering the maximum classification score and the bound-
ing box coordinates using two feed-forward heads. Finally, the
output of the transformer and hand keypoint localization are
provided to the interface to perform the tasks. Hand keypoint
localization works in parallel with the transformer module
and is required to detect the hand joints. It is applied in the
drawing task and the calculator’s operation to select arithmetic
operations. Our contributions are listed below:

1) We propose a hand gesture operated system to help
patients with hand or arm injuries or complications improve
their movement through therapeutic tasks that address different
muscle groups and motor nerves.

2) This novel vision-based system is the first to integrate a
detection transformer with hand gesture detection, estimating
the location of the hand in a frame and its classification score.
We propose a novel combination of hand gesture detection and
hand keypoint localization to enable patients to operate hand
rehabilitation interfaces.

3) For the benchmark datasets, OUHANDS and NUS,
our end-to-end approach outperformed single and two-stage
detection networks and did so just with a single input modality.

This paper is organized as follows: Section II reviews past
work on hand detection. Section III describes our methodology
for hand gesture detection. The system and its operation are
explained in Section IV, while the experimental evaluation
and the results are reported in Section V. Finally, Section VI
presents the conclusion.

II. RELATED WORKS

Hand localization and gesture classification have drawn sub-
stantial attention in the AI research community over the years
because of their extensive application to human–computer
interaction (HCI), robotics, virtual and augmented reality, and
vehicle and home automation.

Object Detection: Hand gesture detection is a form of
object detection. Its development has been promoted by the
Pascal VOC [1] and COCO [2] challenges. Pioneering object
detection algorithms include region-based convolutional neural
networks (e.g., RCNN [3], Fast RCNN [4], Faster RCNN [5])
and you-only-look-once CNNs (e.g., YOLO [6], YOLOv2 [7],
YOLOv3 [8]), SSD [9], RetinaNet [10]. RCNNs comprise
two-stage deep architectures that generate region proposals.
These region proposals undergo further post-processing to
arrive at the intended results, that is, classification scores
and bounding box coordinates. YOLO, single shot multibox
detector (SSD), and RetinaNet have only a single stage, which
makes them much faster than RCNNs. Using a single deep

neural network, they generate anchor boxes for feature maps
and predict classification scores and bounding box coordinates
without the need to generate region proposals. However, they
require post-processing steps, such as non-maximal suppres-
sion (NMS), hard negative mining, or both.

To eliminate the need for techniques requiring prior knowl-
edge of regions, anchor generation, NMS, mining, etc., we
explored the use of transformers. Transformers have already
shown success in natural language processing [11] and are be-
ing tested in object detection. A detection transformer (DETR)
[12] employs an end-to-end approach to predict objects using
a bipartite matching procedure. Its simplified pipeline stream-
lines detection by eliminating anchor generation and non-
maximal suppression. It leverages the transformer to capture
long-range dependencies that help predict the object’s class
label and bounding box accurately. This approach is also useful
for the localization and classification of hand gestures.

Hand Gesture Detection: Bose et al. [13] experimented
with two deep architectures, Faster RCNN and SSD, and
integrated them with the Inception V2 module for precise
and efficient real-time hand gestures recognition. The Faster
RCNN model performed better than the SSD model. However,
as a two-stage detector, Faster RCNN requires more computa-
tion than a single-stage network. In [14], a two-step approach
to hand detection and recognition was proposed. The input
image is fed to an object detector network to identify the
region of interest, i.e., the hand, and subsequently to a CNN to
classify the gesture. Bao et al. [15] designed a CNN to classify
hand gestures without using a segmented mask or detection
annotations to remove irrelevant regions. Dadashzadeh et al.
[16] incorporated hand segmentation to detect the region of
interest and integrated the mask generated from the RGB
image to recognize hand gestures. A two-step system was
proposed in [17], where a YOLOv3 network localized the hand
region, and the gesture was recognized by a VGG-16 [18]
network. In [19], a region-based multiscale fully connected
deep neural architecture was developed, which simultaneously
performed hand classification and bounding box regression
to detect the hand in vehicles and outdoors. Gao et al. [20]
employed 3D hand pose estimation to recognize dynamic hand
gestures. They combined hand keypoints information with
depth and RGB data and classified the data using a deep
neural network. Yuan et al. [21] proposed a deep convolutional
network that fused features derived from multiple sensors.
They also developed a novel data glove to obtain motion
information for the arm and knuckles. However, the glove
impedes gesturing and induces fatigue. Moreover, a data glove
adds to the system’s cost and may not be readily available.

We aimed to develop an end-to-end vision-based hand
gesture detection system that avoids the drawbacks of a two-
step network and the use of specialized sensors. Specialized
sensors for detecting hand gestures may be expensive and
less readily available for procurement than RGB camera
like the ubiquitous webcam. Moreover, specialized sensors
are restricted from use in certain environments, unlike RGB
cameras. Thus, our system only uses a monocular camera. The
camera setup is contactless, which helps to avoid cumbersome
wired sensors that are uncomfortable to wear performing
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Fig. 2. The block diagram depicts the hand gesture detection module.

rehabilitation tasks. Thus, our novel approach provides an
affordable and convenient way to perform rehabilitation tasks
via vision-based techniques.

III. HAND GESTURE DETECTION

The proposed vision-based hand gesture-operated system
combines hand gesture detection and hand keypoint localiza-
tion to guide patients with hand or arm injuries or compli-
cations through rehabilitation exercises/tasks. Its contactless
operation avoids cumbersome wired techniques of monitor-
ing the rehabilitation tasks. The seamless operation of the
touchless hand gesture system relies on accurately detecting
hand gestures as it trains the patients to recover normal
hand gesturing and finger movements. In our system, the
detection process comprises locating the hand and classifying
the gesture simultaneously, which is achieved using a detection
transformer [12]. The intuition for using a transformer is
its ability to capture global information independently of
anchor boxes and NMS. A transformer can use the attention
mechanism to determine the relation between a bounding box’s
top left corner and the bottom right corner, irrespective of their
distance. This section details its architecture and methodology.

The architecture of the hand detection module is shown
in Fig. 2. It constitutes a ResNet 50 backbone that accepts
video frames as input images and passes the signal along
with position embeddings to the transformer. The backbone
captures the local details of the image, and the transformer
network processes the image in its entirety. A transformer
divides an image into patches to form a sequence. This position
embedding indicates the position of the image patches. The
position embeddings are calculated as described in [11]. The
output from the transformer is propagated simultaneously

to a classification and a regression head. The classification
head consists of a fully connected layer with softmax, which
measures the probability of the hand gesture belonging to each
class, i.e., the classification score. The maximum classification
score determines the class label. The regression head is a
multilayer perceptron (MLP), which outputs the bounding box
coordinates of the hand gesture.

A. Transformer Network

For the encoder part of the transformer network, the feature
map from the backbone and the position embedding [11]
produce a source sequence S, which propagates through a
multi-head attention module and a feed-forward neural net-
work to produce the encoder output. Six encoder units work
sequentially. Their structure is shown in Fig. 2.

Multi-head attention (MHA) [11] is the backbone of the
transformer, and can be defined as

MHA(S) = [A1(S)⊕ ...⊕A8(S)]Mp (1)

where single attention head,

A(.)(S) =

exp

(
QT

iKj√
d/η

)
Nkv∑
j=1

exp

(
QT

iKj√
d/η

)
i represents the query index, and j represents the key-value
index. The query, key, and values of an attention mechanism
[11] are arranged into matrices denoted by Q,K, andV , re-
spectively. η represents the number of attention heads, and
d represents the dimensionality of the embeddings. Mp is a
projection matrix. Nkv represents the length of the key-value
sequence. For multi-head self-attention, the query sequence
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Fig. 3. The block diagram of hand keypoints module.

equals the key-value sequence. The self-attention mechanism
is intended to help the model focus on image regions rele-
vant to making a prediction. It also helps preserve temporal
dependencies in the sequence.

The decoder part has two MHA blocks. The first uses self-
attention, and the second uses encoder-decoder attention. A
target sequence, which is a learned position embedding, is
fed to the first MHA. Then, this signal is passed to the second
MHA with the output of the encoder. There are n embeddings,
which encode the contextual information of the object and its
relation to the background. The decoder processes this using
a bipartite relation and outputs a signal deciphered by a feed-
forward network to produce bounding box coordinates and
classification scores. Just like the encoder, the decoder also
has six units. For regularization, the encoder-decoder employs
layer normalization and dropout layers.

The feed-forward network comprises an MLP that estimates
the bounding box’s normalized center (centroid) coordinates,
height, and width. A linear layer with softmax activation
predicts the class of the gesture localized by the bounding
box.
Loss Function: This detection process generates n bounding
box predictions, which is always greater than the actual
number of bounding boxes (m) for the objects present in the
image. As a result, the ground truth set is padded with n−m
“no object” labels to perform bipartite (one-to-one) matching
between the predicted set (y) and the ground truth set (yt).
The optimal index (Î) of the element in the predicted set,
corresponding to the minimum cost of matching the two sets,
is obtained from

Î = argmin
I∈Sn

n∑
i=1

[−1.{αt
i ̸= ϕ}pI(i)(α

t
i)+

1.{αt
i ̸= ϕ} ℓGIOU (β

t
i,βI(i))]

(2)

A ground truth set element i is represented as (αt
i,β

t
i), where

αt
i is the actual class label and βt

i is the actual bounding box
coordinate. pI(i)(α

t
i) is the predicted class probability of class

αt
i for the I(i)th indexed element of the predicted set. In (2),

ℓGIOU represents the generalized intersection over union loss
between the actual bounding box βt

i and predicted bounding
box βI(i). Sn is the set containing the indices of the n (= 100)
predictions.

The Hungarian loss function (ℓH) [12] for training the
network is

ℓH(yt, y) =

n∑
i=1

[−log pÎ(i)(α
t
i) + 1.{αt

i ̸= ϕ}

[κ1 ℓGIOU (β
t
i,βÎ(i)) + κ2 ℓLAD(βt

i,βÎ(i))]]

(3)

where,

ℓGIOU (β
t
i,βÎ(i)) = 1−

|βt
i ∩ βÎ(i)|
|βt

i ∪ βÎ(i)|
+
|β′

Î(i) − βt
i ∩ βÎ(i)|

|β′
Î(i)
|

(4)
ℓLAD(βt

i,βÎ(i)) = ||β
t
i ∩ βÎ(i)||1 (5)

ℓLAD is the least absolute deviation loss and κ1, κ2 ∈ R.

B. Hand Keypoints Module

The hand keypoints module (HKM) is equally essential as
the hand gesture detection module as it trains the patients to
achieve normal arm motion with hand control and movement-
based exercises. The hand keypoints module, inspired by CPM
[22], generates heatmaps for each keypoint of the hand, which
are progressively refined at each stage. The HKM framework
is shown in Fig. 3. The backbone generates a feature map
that is embedded with local information (due to its small
receptive field) and is passed on to the subsequent stage of
the module. There are three stages, which output heatmaps of
the 21 hand keypoints and a background. They are denoted
by hs

λ(x),∀x ∈ X and λ ∈ [1, ...,K + 1],K = 21. Here, s
denotes the stage of HKM where s ∈ {1, 2, 3}, x denotes
the coordinates of the feature assigned to a keypoint, and X
denotes the set containing all coordinates (u, v) of an image.

The network includes stages for intermediate supervision,
which uses a stage-heatmap of the keypoints, concatenated
with the intermediate feature map from the backbone and
passes it through subsequent stages to arrive at a more refined
heatmap. This intermediate supervision approach reduces the
effect of vanishing gradients. Moreover, the stages encode
global characteristics among the keypoints via a larger recep-
tive field. Thus, they incorporate more contextual information
at each stage, helping the network predict heatmaps more
accurately.

The loss function for training the architecture is given by

L =

τ∑
s=1

(K+1)∑
λ=1

∑
x∈X
||hs

λ(x)− hGT
λ (x)||22 (6)

where, hGT
λ (x) is the ground truth heatmap generated from

the actual hand keypoint coordinates; keypoints are depicted
by a Gaussian peak N (x, 2), and τ signifies the total number
of stages.

IV. USER INTERFACE

This section explains the integration of the hand gesture
detection module and the hand keypoints localization module
to operate the hand gesture interface. The system’s framework
is shown in Fig. 4.
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Fig. 4. The block diagram depicts the hand gesture interface for helping patients with hand and arm movement impairment.

Fig. 5. The different muscles (left sub-image) and nerves (right sub-image)
activated by the interface tasks.

Fig. 6. The first window of the hand gesture-based interface comprising the
components to perform different tasks for users with discomfort in hand and
arm movement.

Fig. 7. The gesturing interface.

Fig. 8. The tracing interface.

Fig. 9. The drawing interface.

Fig. 10. The hand gesture operated calculator interface.

The interface was developed to help patients with hand and
arm movement impairments resulting from tremor, stiffness, or
muscle or nerve injury. The interface supports simple tasks like
gesturing, tracing, drawing, and operating a calculator, which
use the thenar, hypothenar, and midpalmer muscles. These
muscles are associated with the hand’s abduction, adduction,
extension, flexion, and opposition. The tasks also activate and
train the forearm muscle groups such as flexor and extensor
muscles, and nerves such as brachial plexus, radial, ulnar, and
median nerve, resulting in reduced discomfort and increased
stability. The different muscles and nerves activated by the
tasks performed on the interface are shown in Fig. 5. The
interface supports four tasks, as shown in Fig. 6. The user
selects a task by clicking the button. The tasks are listed below.

1) Gesture: The objective is to ask the user to perform hand
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gestures where the muscles and nerves are activated.
The hand gesture detection module recognizes the ges-
ture and displays it on the interface with its gesturing
score indicating how accurately the user gestured. The
bounding box information determines whether the hand
is stable in one position. If the difference of the bounding
box position in the successive frame exceeds a certain
number of pixels (in this case, 25, which was empiri-
cally determined), the trembling status is set to “Yes”;
otherwise it is set to “No.” Fig. 7 shows the gesture
interface.

2) Trace: This task aims to train the user to make an arm
movement traversing within a specified boundary. As
shown in Fig. 8, the user is asked to traverse within two
rectangles. The centroid of the hand’s bounding box is
used to monitor the movement. Common geometrical
shapes are used to train the user to control the arm
movement and, thus, exercise the arm muscles and the
brachial plexus. A performance score is provided to
track improvement in the traversing activity.

3) Draw: The previous step’s progress is tested in this
interface by removing the boundary feedback. Here the
user is asked to draw a geometrical shape, and the
shape is labeled and displayed. The actual shape of the
drawn pattern is superimposed on the pattern. The index
finger is used to draw the shape. Alternatively, the hand
bounding box centroid may be used. Fig. 9 shows the
drawing interface.

4) Application: Once the user has progressed in the above
activities, the user can operate the calculator by hand.
Here the user needs to keep the hand stable, or else
the gesture is discarded. Also, the user’s hand needs
to traverse in a specific direction to select the required
arithmetic operation. Here the input feed captured by
a webcam is given to a HKM to generate the hand
keypoints. The keypoints are used to detect the tip of
the index finger, enabling the user to select the desired
arithmetic operation. The interface control block accepts
two types of input: the fingertip to select the arithmetic
operation and the detected hand gestures (described in
the previous section) to enter the numbers. Numbers
and operators are displayed on the interface, as shown
in Fig. 10. The figure shows that a user selected an
operator (‘=’) with the tip of the index finger. Algo-
rithm 1 shows the pseudocode for the interface. The
values th1 and th2 are derived empirically, and the other
elements of T are obtained as [thi−1, thi] = [thi−3 +
m − thi−2−thi−3

2 , thi−2 + m + thi−2−thi−3

2 ]. Here, m
is the distance between the symbols, which is empiri-
cally determined. This system operates smoothly despite
background clutter and variations in illumination. The
interface’s output is a string displayed on the monitor,
such as “15 + 10 = 25.” Table I lists symbols used in
Algorithm 1.

V. EVALUATION AND RESULTS

This section covers the experimental evaluation of the sys-
tem. It discusses the datasets used, the experiments performed,

Algorithm 1 Touchless gesture interface application
Input: Ik, k ∈ [1,∞)&Ik ∈ RH×W ▷ Ik: image frames

with operators overlaid
Output: y = n1 ◦ n2, ◦ ∈ {+,−,×,÷} ▷ y: output of

arithmetic operation
1: ∆← height of the overlaid image + offset
2: T← {[th(2i−1), th(2i)] | i = 1 : 5}
3: op← [+,−,×,÷,=]
4: while Ikexists do
5: keypoints← HKM Model(Ik)
6: x1, y1 = keypoints[index finger]
7: if index finger is up& y1 < ∆ then
8: for j = 1→ len(T ) do
9: if x1 ∈ T [j] & j ̸= len(T ) then ◦ ←

op[j] &break
10: else if x1 ∈ T [j] & j = len(T ) then ◦ ← n1 ◦

n2 &break
11: else continue
12: if y1 > ∆ then
13: scores, box← Hand Detection Module(Ik)
14: num← argmax(scores). ▷ num forms n1 and

n2 progressively with each iteration
15: if n1 &n2 decided then goto step 10 and display

TABLE I
SYMBOLS USED IN ALGORITHM 1

Ik Image frame
H Height of the image
W Width of the image

n1, n2 number 1, number 2
y Output of the arithmetic operation

∆
A threshold to consider the hand keypoint
for selection of arithmetic operation

T A set of intervals containing the spatial
positions of the arithmetic operators

op Arithmetic operators
x1, y1 Keypoint coordinates of the index finger

and the results obtained. The work was performed in Python on
an Nvidia Tesla P100 GPU. The evaluation involves: an offline
part to detect hand gestures in datasets and an online part to
test the hand gesture interface. To train the hand detection
module, Adam optimization was used with a learning rate of
0.0001 and a batch size of 2. For data augmentation, random
horizontal flip, random scaling, and random size cropping were
adopted.

A. Datasets

There are few datasets for hand gesture detection (localiza-
tion + classification). Moreover, they tend to use depth images,
infrared images, and images generated by radar and other hard-
to-obtain sensors. These datasets are beyond the scope of this
work, as its goal is to address the challenges of a vision-based
recognition system. Hence, the two benchmark datasets that
are used in this work are the following:

1) OUHANDS: The OUHANDS [23] dataset consists of
about 3000 RGB images of hand gestures for 10 classes. The
resolution of each image is 480 × 640 pixels. The images were
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taken from 23 individuals under complex conditions, such as
background clutter, occlusion, and variations in illumination,
hand size, and pose angle. The dataset also contains segmented
masks of the hand gestures, depth information, and hand
bounding box annotations for each image.

2) NUS II: The National University of Singapore (NUS)
[24] datasets consist of NUS I, which contains image samples
of hand gestures with a uniform background, and NUS II,
which contains hand gestures captured in challenging environ-
ments, such as in the presence of other humans, background
clutter, and illumination variations. This work performs the
evaluation on NUS II only. This dataset has 10 classes with
2000 RGB images of gestures with background clutter of
resolution 160 × 120, and 750 RGB images of gestures
with humans in the background of resolution 320 × 240.
However, the hand bounding boxes were not annotated, which
is required for our evaluation. Thus, this task was performed
with LabelImg [25].

Fig. 11. A plot showing the validation accuracy score of the detection model
for different epochs during training for the OUHANDS and the NUS datasets.

B. Training, results, and analysis

1) Offline: For training the hand detection model, we used
transfer learning. As each dataset has fewer samples than
required to train a deep neural network, instead of training
from scratch, the pre-trained weights of DETR [12] were
finetuned by freezing the transformer weights and retraining
the classification and regression heads. This helps the network
learn spatial hierarchies, that is, universal and repurposable
characteristics of the data, shared with the much larger COCO
[2] dataset. The training process was performed for 50 epochs.
The training was performed with 65% of the data, and the
remaining 35% were equally divided between validation and
testing. The testing set was isolated from the training and
validation sets, and no testing data were exposed during
training.

For both datasets, the model’s performance by epoch is
shown in Fig. 11. The NUS model likely performed better than
the OUHANDS model because the former contained fewer
variations in illumination and hand size. The maximum change
in the hand’s bounding box area for the OUHANDS dataset
was 0.52 square pixels, and the NUS dataset was 0.24 square
pixels, indicating higher scale variability for OUHANDS.
Regarding illumination, the mean difference between the inten-
sity histogram’s maximum and minimum value for the images
of the datasets was 0.054 and 0.028 for the OUHANDS and
NUS datasets, respectively, which indicates greater variation in

OUHANDS. Based on validation accuracy, the model trained
at the 20th and 35th epoch were used to test the OUHANDS
and NUS datasets, respectively. The validation performance of
the detection model is shown in Fig. 11.

The performance measures for the two datasets are the
accuracy score and F-score, which are given as

Accuracy =

∑
i

CMii∑
i,j

CMij
(7)

F − score =
2

#C

∑
i

CMii∑
j

CMji
×

∑
i

CMii∑
j

CMij∑
i

CMii∑
j

CMji
+

∑
i

CMii∑
j

CMij

(8)

where CM denotes the confusion matrix, and #C denotes the
number of classes. 1

#C

∑
i

CMii∑
j

CMji
signifies average precision,

and 1
#C

∑
i

CMii∑
j

CMij
signifies average recall.

The confusion matrices for the two datasets are shown
in Fig. 12. Table II and Table III show the performance of
the proposed hand gesture detection model for both datasets.
The proposed method achieves an accuracy of 89.6% for
OUHANDS and 100% for NUS. Similarly, the two datasets’
F-scores are 89.9% and 100%, respectively. These results
demonstrate the system’s effectiveness. The training and test-
ing time details are as follows:

• Training time: for OUHANDS = 7 hours, for NUS = 5
hours.

• Inference time for a single image = 56 ms.
• The number of trainable parameters = 41.28 M.

Fig. 12. Confusion matrix after testing on the (a) OUHANDS dataset and
the (b) NUS dataset.

TABLE II
PERFORMANCE OF THE DETECTION MODEL ON OUHANDS DATASET

CLASS PRECISION RECALL F-SCORE
A 0.89 1.00 0.94
B 0.82 1.00 0.90
C 0.90 0.9 0.90
D 0.80 0.88 0.84
E 0.87 0.96 0.91
F 0.97 0.60 0.74
H 0.88 0.88 0.88
I 0.92 0.92 0.92
J 1.00 0.98 0.99
K 0.98 0.84 0.90

Avg 0.903 0.896 0.899
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TABLE III
PERFORMANCE OF THE DETECTION MODEL ON NUS DATASET

CLASS PRECISION RECALL F-SCORE
All categories 1 1 1

Avg 1 1 1

TABLE IV
INFERENCE TIME COMPARISON FOR DIFFERENT METHODS.

Methods Inference time per image
Faster RCNN 230 ms

Faster RCNN + CPF 130 ms
Retina Net 64 ms

Bhaumik et al. [26] 6.4 s
Sharma et al. [17] 97 ms

Bose et al. [13] 140 ms
Ours 56 ms

A comparison of the inference times of different methods
and the proposed method is shown in Table IV. Fig. 13 and
Fig. 14 depict the accurate localization of the hand gesture
via the bounding box and the classification of the localized
gesture.

Robustness: The detection results of the model for input
images with human faces and other objects in the background,
extreme variations in illumination, and hands of different
shapes and sizes are shown in Fig. 13 and Fig. 14 to demon-
strate the method’s detection capability. Even when the hand is
not upright (or affine transformed), it is detected successfully.
Detection is effective because the attention mechanism is
trained to attend to the hand region, making it impervious to
background clutter. Moreover, using affine-transformed data
and normalization make the model robust to geometric trans-
formations and variations in illumination and scales.

Fig. 13. Detection of hand gestures from the OUHANDS dataset in the
presence of a human face (top left), background clutter (top right), illumination
variation (bottom left), and change in hand orientation (bottom right).

State-of-the-art comparison: We evaluated the system’s
effectiveness by comparing it with state-of-the-art methods.
Table V shows that the proposed work performs better than
state-of-the-art methods. The proposed work uses only one
input modality, an RGB image. It is a single-stage end-to-end
approach, for which the network’s input is the color image,
and its output is the class prediction and the bounding box
coordinates. However, alternative approaches either use a two-
stage network or multiple input modalities. This work also

Fig. 14. Detection of hand gestures from the NUS dataset in the presence
of background clutter (top left), illumination variation (top right), an outdoor
environment (bottom left), and the human face with a different pose angle
(bottom right).

TABLE V
COMPARATIVE STUDY OF THE STATE-OF-THE-ART WORKS AND THE

PROPOSED WORK.

Papers Objective Dataset Acc (%) F-score (%)
Dadashzadeh

et al. [16]
Segmentation

& Classification OUHANDS 87.8 88.1

Bose et al. [13]
(two-stage network)

Localization &
Classification NUS 97.1 97.98

Bose et al. [13]
(single-stage network)

Localization &
Classification NUS 97.17 97.17

Aditya et al. [27] Classification NUS 94.7 94.26
Pisarady et al. [24] Classification NUS 94.36 94.9
Sharma et al. [17] Classification NUS 96.62 97.43

Bhaumik et al. [26] Classification NUS 97.78 97.28
Sahoo et al. [28] Classification NUS 94.8 94.07

Tan et al. [29] Classification NUS 98.4 98.4

Bhaumik et al. [30] Classification OUHANDS 65.1 64.56
NUS 98.75 97.0

Baseline [23] Localization &
Classification OUHANDS 83.25 50

Retinanet [10] Localization &
Classification OUHANDS 87.5 87

Faster R-CNN+CPF Localization &
Classification NUS 95 95.06

Faster R-CNN Localization &
Classification NUS 93.1 93

MS-FRCNN Localization &
Classification NUS 87 87.12

MS-RFCN Localization &
Classification NUS 78.23 76.14

Proposed Work Localization &
Classification

OUHANDS 89.6 89.9
NUS 100 100

compares its results with those of a baseline [23] and to other
object detection frameworks [13], as detailed in Table V. The
results demonstrate the system’s reliable performance relative
to others.

2) Online: This subsection covers the performance of the
proposed interface. The operation of the interface was ex-
plained in Section IV. Here the algorithm’s detection capability
in online mode (i.e., using a webcam) is presented. Fig. 15
shows different instances where the detection was made for the
webcam feeds under varying conditions, such as background
clutter, hands of different shapes and sizes, different subjects,
and the presence of human faces or specular reflection. It also
shows the detected hand keypoints and a sub-image with the
tip of the index finger.

System’s effectiveness: Two groups of five South Asian
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TABLE VI
STUDY OF THE EFFECTIVENESS OF THE GESTURING INTERFACE ON FIVE PATIENTS. THE NUMBER OF SUCCESSFUL GESTURING OUT OF 50 ATTEMPTS IS

SHOWN FOR EACH PATIENT, AND OVER THE COURSE OF 10 OBSERVATIONS, A STEADY IMPROVEMENT IS SEEN. P REPRESENTS PATIENT.

Observations (out of
50 attempts of gesturing)

Ouhands NUS Mean Standard
deviationP 1 P 2 P 3 P 4 P 5 P 1 P 2 P 3 P 4 P 5

1 1 0 0 2 5 2 2 0 5 2 1.9 1.75
2 1 0 1 8 6 2 4 3 10 10 4.5 3.58
3 5 5 1 10 10 10 10 10 18 22 10.1 5.82
4 6 9 5 18 14 10 15 11 15 25 12.8 5.65
5 8 10 15 22 26 18 22 26 21 32 20 7.05
6 10 19 28 25 25 23 23 30 24 37 24.4 6.66
7 20 31 27 29 26 35 33 35 30 38 30.4 4.98
8 28 38 31 33 31 34 40 39 35 40 34.9 4.01
9 32 41 38 35 40 39 43 45 40 39 39.2 3.51
10 39 45 42 40 40 41 43 48 45 42 42.5 2.65

TABLE VII
STUDY OF THE PERFORMANCE OF FIVE PATIENTS WHO DID NOT USE THE GESTURING INTERFACE. THE NUMBER OF SUCCESSFUL GESTURING OUT OF 50

ATTEMPTS IS SHOWN FOR EACH PATIENT AND FOR 10 OBSERVATIONS. P REPRESENTS PATIENT.

Observations (out of
50 attempts of gesturing)

Ouhands NUS Mean Standard
deviationP 1 P 2 P 3 P 4 P 5 P 1 P 2 P 3 P 4 P 5

1 1 1 0 0 0 1 0 0 2 1 0.6 0.66
2 2 1 1 2 2 3 1 0 2 2 1.6 0.8
3 3 3 2 2 3 3 2 1 1 3 2.3 0.78
4 3 5 3 4 5 5 5 2 3 4 3.9 1.04
5 6 9 5 7 8 8 9 7 5 8 7.2 1.4
6 10 10 8 11 11 12 11 10 11 13 10.7 1.26
7 12 13 10 13 13 15 13 14 14 16 13.3 1.55
8 15 16 13 16 15 15 16 17 16 18 15.7 1.26
9 18 19 16 17 19 19 19 21 20 20 18.8 1.4
10 20 22 19 20 21 21 23 21 24 22 21.3 1.41

TABLE VIII
NUMBER OF HAND GESTURES ACCURATELY DETECTED IN THE CALCULATOR INTERFACE IN A 20-SECOND INTERACTION. THE PATIENTS’

PERFORMANCES WERE RECORDED AS THE RATE OF ACCURATE DETECTION OF THE GESTURES IN AN ENVIRONMENT WITH VARIABLE ILLUMINATION
AND BACKGROUND CLUTTER. P REPRESENTS PATIENT.

Illumination variation Background clutter
P 1 (%) P 2 (%) P 3 (%) P 4 (%) P 5 (%) P 1 (%) P 2 (%) P 3 (%) P 4 (%) P 5 (%)

classes

0 88.23 100 90 100 94.73 100 100 100 95 95
1 100 100 94.73 100 90 100 100 100 100 100
2 89.47 94.44 84.2 80 100 89.47 90 100 100 95
3 94.73 89.47 94.73 100 88.23 94.73 95 100 89.47 94.73
4 94.73 100 90 95 100 100 100 95 90 89.47
5 100 89.47 95 88.23 88.23 94.73 89.47 88.23 90 100
6 100 90 94.73 100 95 100 90 100 94.73 90
7 94.44 84.2 88.23 80 100 100 95 100 94.73 100
8 100 88.23 100 94.73 100 100 95 88.23 90 100
9 100 89.47 100 90 95 100 100 90 100 100

Fig. 15. (a) Different instances of hand gesture detection on the video frames.
(b) The frames highlighting keypoints detected. Fig. 16. Tracing performance for 10 observations.

This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAI.2023.3251309

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: IUPUI. Downloaded on January 10,2024 at 18:38:41 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 17. Visual observation of the outcome of the draw interface. Improvement
in hand movement is represented in column-wise order (from column 1 to
column 3).

male patients, aged 20 to 35, with hand and arm movement
complications, were considered to interact with the hand
gesture interface. One group was trained in the rehabilitation
tasks, and the other was not trained to study the effect of
the gesturing interface on rehabilitation. Prior approval of
IIT Guwahati’s ethics review board was obtained before data
acquisition. The patients were asked to gesture the 10 classes
of OUHANDS and NUS datasets five times. Every three
days, an observation was made, and 10 of those observations
were recorded to keep track of the patients’ improvement
in gesturing. If they could gesture a particular class with a
gesturing score above 60% and acceptable trembling (i.e.,
the difference between the hand bounding box is less than
25 pixels), the gesture would be considered a success. Thus,
50 attempts were made for each of the 10 observations (5
times gesturing × 10 classes = 50 attempts). The findings are
shown in Table VI for the group using the gesturing interface
and in Table VII for the group not using the interface. The
observations in Table VI indicate that the continuous use of
the interface helps patients recover normal gesturing. It also
helps relieve hand stiffness and weakness by guiding hand or
finger movements. However, Table VII suggests that the group
that did not use the interface showed slower recovery. The p-
value for both groups is 0.026, which shows the rehabilitation
tasks’ statistical significance.

In addition, a performance score is used to monitor im-
provement in the user’s path traversal for 10 observations. This
is plotted in the graph shown in Fig. 16. Here, the patients’
hand stability is gradually improved owing to their use of
the interface. The patients tend to tremble less and control
their hand movement better through use. This is shown in
Fig. 17 too, where the patients draw a particular shape, and
the deviation from the actual shape’s boundary is observed
visually.

The performance score is given by

performance score =

num∑
i=1

α

n
(9)

where α =

{
1, (xc, yc) ∈ (R1 −R2)

0, otherwise
(10)

(xc, yc) denotes the centroid of the hand bounding box, and
num denotes the total number of centroids of the bounding

box that constitute the path traversed. R1 and R2 represent
the area of the large and small rectangle, as shown in Fig. 8.

Furthermore, the five patients were asked to interact with
the calculator interface using the 10 hand gestures for 20 s
each. They operated this interface once they were confident
with the previous tasks. Their performance was recorded as
the rate of accurately detecting the gestures in Table VIII in an
environment with variable illumination (dim light, bright light,
and light from the side) and background clutter. The classes
used in the table represent the classes in the datasets in their
respective order. However, to represent the decimal number
system, they are replaced by digits. The table indicates the
interface recognizes the gestures accurately in most cases in
the two challenging conditions. Thus, it works seamlessly in
the online mode. It makes reliable inferences while avoiding
the need for many sensors, sensors requiring physical contact
with the user, or sensors restricting the user’s movement. This
interface’s purpose is to verify the hand’s normal functioning
using an application that includes all of the hand rehabilitation
tasks. It offers the usage of a hardware-free calculator. More
importantly, using this interface gives a patient the gratification
of regaining normal hand functioning.

VI. CONCLUSION

This work developed an AI application, i.e., a hand gesture-
operated system interlaced with different activity interfaces,
which helped rehabilitate hand and arm function in patients
with injuries or muscle or nerve conditions. The system’s ef-
fectiveness may be attributed to its accurate detection of hand
gestures. The hand detection mechanism comprises an end-to-
end transformer network (an encoder-decoder deep neural net-
work) that outputs the hand gesture’s class label and bounding
box coordinates. The transformer network’s multi-head atten-
tion mechanism offers a key advantage over other techniques
by capturing global information while concentrating on “what”
and “where” to localize the hand gestures. The hand gesture
localization and classification model outperformed state-of-
the-art approaches when tested on two benchmark datasets.
Moreover, this work includes a hand keypoint detection model
that estimates the finger joints’ locations. The index fingertip
keypoint was used to augment hand gesture classification and
localization for interface tasks like drawing shapes or using
the calculator. The results show that the system helped the
patients progress in stabilizing and restoring normal hand and
arm functioning. We plan to extend the system to support more
physical therapy exercises for the hand and arm.
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