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Patient Assistance System Based on Hand
Gesture Recognition

H. Pallab Jyoti Dutta , M. K. Bhuyan , Senior Member, IEEE, Debanga Raj Neog ,
Karl Fredric MacDorman , and Rabul Hussain Laskar

Abstract— We propose a two-stage hand gesture recognition
architecture to support a patient assistance system. Some medical
conditions limit mobility, and the patient must rely on medical
staff to meet their needs. In such cases, a phone or intercom is
not convenient to call for help. A vision-based system operated
by changing the orientation of fingers can be used to send
specific messages without making arm movements. However,
vision-based hand gesture recognition is hindered by occlusion,
background clutter, and variations in illumination. Therefore,
we developed a two-stage architecture: the first stage produces
a saliency map to simplify recognition and the second stage
performs classification. A novel combined loss function optimizes
the saliency detection model and makes the saliency map more
precise. An adaptive kernel-based channel attention layer is
used to emphasize salient features. The proposed architecture
achieved precise saliency detection on four benchmark datasets
and high-accuracy recognition on two. We designed an interface
for patients to send specific messages to the medical staff using
hand gestures. The interface help patients request assistance and
connect with medical staff without leaving the bed or involving
a third party.

Index Terms— Channel attention, convolution neural network
(CNN)–transformer network, hand gesture recognition, patient
assistance, saliency detection, virtual interface.

I. INTRODUCTION

HAND gestures offer a natural and spontaneous way to
communicate [1], [2], [3]. People convey much infor-

mation through hand gestures, especially those with speech
disorders, disabilities, or in hospital. Thus, hand gesture recog-
nition plays a vital role in communication. This article explores
the possibility of developing an assistive system for smooth
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interaction between patients and medical staff via simple hand
gestures.

Whenever a patient requires assistance, the medical staff
should attend to their requirements swiftly and effectively.
The communication between the patient and the medical staff
must be optimal to deliver the best service. The patient may
need help to use the restroom, eat, call someone, or switch on
an electrical appliance. If the medical staff receives specific
requests regarding a patient’s needs, they may act promptly,
but most healthcare facilities do not have such an efficient
communication system. Primarily the facilities rely on bells
and voice commands for communication. These modalities are
ineffective when the patient needs to convey a specific message
or is unable to speak. Thus, hand-gesture-based interaction
seems to be a viable option for communicating the needs.
We intend to use hand gestures that can be gestured by simply
changing finger arrangements and do not involve much hand
movement. These simple hand gestures do not induce much
strain on the hand, as the patients can gesture while resting
their hands on the bed.

Various techniques can capture patients’ hand gestures,
such as electromyographs (EMGs), data gloves, and cam-
eras. But EMG and data gloves are cumbersome to use.
Therefore, we prefer a vision-based environment where a
camera-operated virtual instrument or interface provides the
medium for interaction. Moreover, a camera is more readily
available and cheaper than other devices for capturing hand
gestures. However, barriers to accurate hand gesture recog-
nition include background clutter, human skin regions in the
vicinity of the gesturing hand, variations in illumination, and
other sources of noise. In this work, we address these barriers
and achieve accurate hand gesture recognition using a novel
convolution neural network (CNN)–transformer model.

The benefits of CNN lie in its capturing of local information
in feature maps, making useful assumptions about the targeted
task (i.e., spatial inductive bias), and sharing weights. Trans-
formers, in contrast, excel in fusing global contextual infor-
mation, generalizing, and including an attention mechanism.
Therefore, we propose a two-stage approach to recognizing
hand gestures that combines the strengths of both architectures.
Its block diagram is shown in Fig. 1. The first stage, that is,
saliency detection, accepts the color input image of the hand
gesture and generates a saliency map that segments the fore-
ground hand region from the background clutter. The saliency
map is a binary image with the hand represented by white
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Fig. 1. Block diagram of the proposed method.

Fig. 2. Schematic of the PAS setup.

pixels and the background by black. The saliency detection
stage contains a lightweight encoder–decoder network whose
output is fed to the second stage for classification. The second
stage labels the recognized class of the hand gesture. This
recognized hand gesture relays the patient’s message to the
medical staff via a patient assistance system (PAS). The PAS
is an interface that contains different messages associated with
different hand gestures used by a patient to ask for assistance.
When a patient gestures, the PAS recognizes the hand gesture
and associates the message assigned to it. Then, the PAS
transmits the message to the medical staff’s computer so that
they can view the request and pass it to a staff member who
can attend to it.

The PAS’s setup consists of a tablet with an in-built
camera to capture image frames containing the hand region
and display the interface to the patient, a stand to hold the
tablet, a communication link (maybe wired or wireless), and
a computer to receive the message on the medical staff end.
Fig. 2 shows a typical setup. The tablet is placed at a suitable
distance so that the interface is visible to the patient, and
the patient does not hit it while getting out of bed. The
communication link is established over the internet, which
may be a wired connection or WiFi. This system has two
aspects: one is accurate hand gesture recognition, and the
other is optimal transmission management between the end

users. This work mainly focuses on hand gesture recognition
to develop a robust and efficient system that decodes the
messages sent via hand gestures. Now to train the recognition
part of the system, we use publicly available hand gesture
recognition image datasets captured in complex environments.
We used datasets that involve minimal hand movement and can
be gestured by simply changing the finger positioning. Using
publicly available datasets help us avoid restricting the system
to a particular hospital environment but enables its training
and testing to generalize to other environments. The result is
that the system performs well and overcomes the shortcom-
ings of other vision-based systems. We used HGR [4], [5],
HIU [6], and Egohands [7] for the saliency detection stage, and
Ouhands [8] and NUS [9] for the classification stage. These
datasets contain color images captured in environments that
challenge a camera-based recognition system.

The contributions of this work are as follows.
1) We propose a novel saliency detection technique, which

combines the benefits of a CNN and a transformer,
to obtain a saliency map that precisely separates the hand
from the background.

2) We also propose a novel classification network that uses
an adaptive kernel channel attention layer (AKCAL) to
increase hand gesture recognition accuracy.

3) The transformer’s self-attention is replaced with an
efficient attention mechanism to reduce computational
complexity and memory requirements.

4) A compound saliency loss function is proposed to main-
tain the hand’s geometrical shape and smooth boundary,
especially around the fingers. It also corrects for class
imbalance.

5) We propose a PAS that translates the patient’s hand
gestures into messages conveyed to medical staff.

6) The proposed architecture performs well on four bench-
mark hand segmentation datasets and two hand gesture
datasets with better evaluation results than state-of-the-
art methods.

This article is organized as follows. Section II reviews previous
work in this area. Section III describes the methodology,
detailing the saliency detection process, classification stage,
and the loss function. Section IV introduces the PAS, and
Section V evaluates the proposed method. Finally, Section VI
concludes this article.

II. RELATED WORK

Over the years, researchers have been working toward accu-
rate hand gesture recognition due to its pervasive applications
in computer vision [1], [3]. Saliency detection is an important
step in hand gesture recognition, which frees the image of
its background and emphasizes only the foreground. Much
work is based on segmenting the hand from the background
by machine learning using hand-crafted skin color or texture
information and skin modeling algorithms [10], [11], [12].
However, hand-crafted features can introduce bias, and the
accuracy of hand mask generation is less than ideal. Recently,
improved accuracy from deep learning approaches has gained
researchers’ attention.
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A saliency map can be determined using an encoder–
decoder architecture, such as U-Net [13] and Attention
U-Net [14]. But generating a precise saliency map to delin-
eate the hand region in the presence of background clutter,
skin regions, and varying lighting conditions requires further
effort. This area has seen advances such as TransUnet [15].
This transformer-based segmentation model for medical image
segmentation combines the benefits of U-Net and transformers.
Here, a CNN–transformer-based encoder passes the encoded
feature map to a CNN decoder, which performs gradual
upsampling. As with U-Net, skip connections from the encoder
to the decoder enable precise segmentation results. However,
this approach requires more transformer units, resulting in
more training parameters and greater computational com-
plexity. In [16], the segmentation architecture was fine-tuned
for hand segmentation on first-person videos. Conditional
random fields further refine the segmented maps to achieve
precise results for various datasets. Cai et al. [17] modeled
prediction uncertainty across various domains and the hand
shape information. They also considered the first-person view
and performed hand segmentation using a self-supervised
Bayesian-CNN. In [18], segmentation masks are generated
for depth videos by combining two soft proposals a proposal
detecting the hand using a CNN on the current frame and
another proposal tracking the hand using a Kalman filter from
the previous frame.

Once the saliency map has been determined, this infor-
mation is passed to the recognition network. Restricting the
input to the region of interest improves recognition rates.
Dadashzadeh et al. [1] proposed a network that segments the
hand using residual convolution blocks (RCBs) and atrous
convolutions. The original input and the segmented mask
form a two-way network whose final layer predicts the out-
put of the hand gesture. Dutta et al. [19] adopted a simi-
lar approach, that is, labeling 34 classes of hand gestures
after segmenting the hand region using U-Net. However,
the images contained uniform backgrounds. Bao et al. [20]
recognized hand gestures without localizing the hand and
achieved good results on images with a simple background.
Their performance on images with complex backgrounds was
average, and most importantly, they considered only seven
classes. Chevtchenko et al. [21] proposed a three-way feature
extraction scheme to obtain hand gesture recognition. They
concatenated features obtained from a CNN with the original
input image, a CNN with Gabor filter output as input, and
hand-crafted Zernike moments, Hu moments, and contour
features of the hand. This makes the entire network a bit
messy, which can be avoided as the goal of deep neural
networks is to avoid hand-crafted features. Le et al. [22]
proposed a multiscale region-based fully convolution network
that performs hand detection and classification. They used
different filter sizes to capture global and local features and
achieve multiscale feature extraction. This also highlights
the usefulness of precise localization and classification for
accurate hand gesture recognition in complex surroundings.

Despite much work on hand gesture recognition, researchers
have yet to achieve a robust technique to obtain accurate results
in challenging environments, as highlighted earlier. This work

Fig. 3. Encoder–decoder architecture for saliency detection.

targets these issues by proposing a two-step approach shown
effective through evaluation with benchmark datasets.

III. METHODOLOGY

This section describes the proposed methodology for
saliency map estimation and saliency-map-based hand gesture
recognition. It also explains the procedure for operating a PAS
using recognized hand gestures. The key components of the
proposed method are described in Sections III-A–III-B.

A. Saliency Detection

Saliency detection is a method to determine the region of
interest in a color image. In our case, this preprocessing phase
segments the hand from the background to remove irrelevant
content, such as background clutter, and negates the effect of
illumination variations through pixel-by-pixel binary labeling
of the foreground and background. The proposed saliency
detection uses an encoder that accepts a color image as input
and encodes it in a compressed latent space. The encoder is a
combination of convolution and transformer blocks to embed
the local and finer semantics of the object and the long-range
(global) relationships in an image. The convolution block is
arranged at the beginning to encode the structural and shape
features, which results in a compact representation of the input.
This compact representation is fed to the transformer, which
further encodes it into object-specific high-level features.
These high-level features do not convey any meaning visually
but possess semantically significant attributes for classification
tasks. Moreover, transformers contain multihead self-attention
mechanisms (SAMs). If these mechanisms are placed toward
the end stage, it improves prediction performance [23]. Thus,
they are added to the later part of the encoder. The latent
feature maps generated by the encoder are fed to the decoder,
gradually upsampling the feature maps to match the dimension
of the input image. After each upsampling, the decoder’s resul-
tant feature maps are concatenated with the encoder’s
corresponding dimension feature maps to obtain precise seg-
mentation results. The decoder has no transformers because
it only decodes whatever has been encoded without the
need to capture the high-level abstract representation. The
block diagram of the encoder–decoder architecture is shown
in Fig. 3.

An input image, I ∈ RH×W×C , is given to a block of con-
volution, batch normalization, and ReLU layers. The resultant
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Fig. 4. Left: the RCB. Right: the CTB.

feature map, F ∈ RH ′
×W ′

×C ′

, is passed through three blocks
of RCBs, shown in Fig. 4 (left), and the output is given as

F ′
= (R ◦ BN ◦ conv ◦ R ◦ BN ◦ DPconv ◦ R

◦ BN ◦ conv)(F) + F (1)

where BN is the batch normalization layer, conv is the
convolution layer, R is the ReLU activation, and DPconv is
the depth + pointwise convolution layer. The representation
( f ◦g)(x) in the equation means f (g(x)). The depth + point-
wise convolution layer adds fewer parameters to a model’s
training parameters than a convolution layer. Thus, it is an
efficient means of learning a feature map’s representation.
The addition of F in (1) represents skip connections to
counteract vanishing gradients. The downsampled F ′ is fed
to a convolution–transformer block (CTB), shown in Fig. 4
(right), which embeds the spatial inductive bias and distal pixel
dependencies. CTB’s output is given as

f = (R ◦ conv)
{(
R ◦ conv ◦ U ◦ Transformer(n)

◦ P
◦R ◦ conv ◦ R ◦ conv)

(
F ′
)
+ F ′

}
. (2)

Here, P represents dividing the feature map F ′′ from the
second convolution layer of CTB into patches, i.e., P :

F ′′
→ F ′′′, F ′′′

∈ R(hw)×η×C ′′

, which imitate the sequential
arrangement to be given to the transformer unit. The height
and width of each patch are denoted by h and w, respectively.
C ′′ is the channel number of F ′′ and η = (H ′′W ′′)/(hw) with
H ′′ and W ′′ being the height and width of F ′′, respectively.
The transformer unit, represented by Transformer(n), is stacked
n times before passing the feature map to the “unpatching”
operation, U , which maps the transformer output Ftrans to a
convolution-like feature map, i.e., U : Ftrans → F ′′′′, F ′′′′

∈

RH ′′
×W ′′

×C ′′

.
The encoder contains a CTB after the third, fourth, and fifth

RCBs, followed by a block of convolution, batch normaliza-
tion, and ReLU layers, as shown in Fig. 3. The encoder’s last
convolution block maps its output to a high-dimensional latent
space, from which the feature map f is fed to the decoder.
The decoder is a sequential arrangement of convolution blocks
represented as

fsaliency =
(
sigmoid◦BN◦conv◦RCB◦Up ↑◦RCB◦⊕

3Up ↑

◦ RCB ◦ ⊕
2Up ↑ ◦ RCB ◦ ⊕

1Up ↑
)
( f ). (3)

TABLE I
DESCRIPTION OF THE SYMBOLS USED FOR THE SALIENCY DETECTION

AND CLASSIFICATION ARCHITECTURE

Up ↑ is the upsampling of the incoming feature map by a
factor of 2. ⊕

1, ⊕2, and ⊕
3 are the skip connections from the

encoder’s fourth RCB, third RCB, and first ReLU activation
layer, respectively. The sigmoid activation layer outputs the
salient feature map fsaliency emphasizing the hand region and
removing the background. Many symbols are used to describe
the architecture’s layers and operation, tabulated in Table I.

Transformer Unit: The transformer unit proposed here does
not use the SAM generally used by transformers. The pro-
posed transformer unit linearizes the quadratic self-attention
by ending the quadratic dependency on the spatial dimension
of the patch. Thus, the computational complexity and memory
requirements are reduced significantly. The block diagram of
the transformer unit is shown in Fig. 5.

Transformers encode an image’s global characteristics
using a multihead attention mechanism that combines sev-
eral SAMs [24]. In an SAM, a feature map F ∈ Rm×n×c

is constructed into F1
∈ Rmn×c and for ath location in

F1, ∃ Ga ∈ Rc. From Ga , three vectors {Gq
a , Gk

a, Gv
a} ∈ Rdk

are generated: query, key, and value. The dot product (Gq
a)

T Gk
b

measures the relevance of the present location for attention,
i.e., the significance of the bth location with respect to the
ath location. This dot product is stabilized by (dk)

1/2 and
normalized by the softmax function to guarantee positive
values. Finally, the product is multiplied by Gv

a to acquire the
weighted value vector at a. Similarly, for all the mn locations,
the weighted value vectors are calculated and summed to
obtain the SAM’s output attention vector at the ath location.
In terms of matrices, the query, key, and value matrices are
represented as {Q, K, V} ∈ Rmn×dk . Therefore, the output
attention map is

Output attention map = softmax

(
QKT

√
dk

)
V . (4)
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Fig. 5. Transformer unit.

However, the SAM has O(dk(mn)2) computational complex-
ity. Moreover, for systems with limited memory, its O((mn)2)

memory usage can result in an out-of-memory error. Thus,
inspired by Zhuoran et al. [25], we propose a transformer unit
with linear, instead of quadratic complexity. Here, the queries,
keys, and values are grouped, such that the respective matrices
are {Qi , Ki , V i

} ∈ Rmn×(dk )/(|div|). i representing the i th group,
i ∈ [1, . . . , |div|] and |div| is the number of divided groups.
Now

(QK)T V = Q
(
KT V

)
(Matrix associativity). (5)

This associativity with softmax function can be achieved
using two softmax operations: 1) query softmax and 2) key
softmax [25]. The resulting attention map for the i th group is

attentioni
= softmaxq

(
Qi)(softmaxk

(
Ki)T V i

)
. (6)

Similarly, for all i we have attention1, attention2, . . . ,

attention#div, which are concatenated and feed to a convolution
layer to obtain a new attention map given by

attentionnew = conv
([

attention1, attention2, . . . , attention|div|
])

∈ Rmn×c. (7)

This attention map treats each channel of the key as a feature
map. The channel is multiplied by value to compute global
features that weight every location of the incoming feature
map. The global features are accumulated by multiplying
query with the product of key and value. The final product
ensures attention to class-specific features and their location.

Due to this modification, the memory complexity of the
transformer unit is reduced from O((mn)2) to O(dkmn +

d2
k ) and computational complexity from O(dk(mn)2) to
O((dk)

2mn). Thus, the quadratic increase in complexity with
the feature map’s spatial dimensions is avoided. The complex-
ity now depends on dk , which is set by the developer.

The sequential features from the patch block are fed to
the layer normalization layer of the transformer unit. Since
layer normalization deals with sequential data better than batch
normalization and is independent of batch size, it is adopted
for the transformer’s normalization [26]. The transformer’s
output feature map, ftrans is given by

fint = LN[(D0.1 ◦R ◦ attentionnew ◦ LN)(P) + P]
ftrans = (D0.1 ◦R ◦D ◦ D0.1 ◦R ◦D)( fint) + fint. (8)

Here, LN is the layer normalization layer, D0.1 is the dropout
layer with the dropout rate set to 0.1, and D is the dense
layer. fint is the intermediate feature map that is given to the
feedforward network of the transformer. Two skip connections
facilitate transfer of finer details to the later layers.

B. Classification

The saliency map, after the removal of background clutter,
is fed to the proposed classification network. The highlights
of the classification network are the novel convolution–
transformer feature engineering model and AKCAL. AKCAL
uses adaptive kernels at different scales to ensure automatic
feature extraction, ensuring the network focuses on only the
hand region, not on the adjoining background region. This
enhances gesture recognition accuracy.

The saliency map passes through a convolution-batch
normalization-ReLU block and a max pooling layer. This
feature map is fed to a sequential arrangement of three blocks:
1) the depth + point convolution layer; 2) the convolution-
batch normalization-ReLU block; and 3) AKCAL. Next, the
input is added as a skip connection to the output. A max
pooling layer follows, which halves the spatial dimension.
This sequence of passing the feature map through a sequential
arrangement of feature extracting blocks, and skip connection
followed by a max pooling layer is carried out for three more
levels before passing to a multilayer perceptron (MLP) for
classification. Toward the end of the network, CTB replaces
the convolution–batch normalization–ReLU block because of
the transformer’s ability to encode high-level class-specific
features. The following set of equations describes the feature
engineering approach:

81 = (M ◦R ◦ BN ◦ conv)
(

fsaliency
)

(9)
82 = M[(AKCAL ◦R ◦ BN ◦ conv ◦ DPconv)(81) + 81]

(10)
83 = M[(AKCAL ◦ DPconv)(82) + 82] (11)
84 = M[(AKCAL ◦ BN ◦ conv ◦ DPconv)(83) + 83] (12)
85 = (CTB ◦M)[(AKCAL ◦ DPconv ◦ CTB)(84) + 84]

(13)

where M denotes the max pooling layer. The feature map
85 is flattened and passed to the classifier given by

classes = (D ◦D ◦ D0.4 ◦D ◦ flatten)(85). (14)
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Fig. 6. Classification module. (a) Classification network. (b) AKCAL.

The number of neurons in the MLP’s hidden layers is pro-
gressively reduced to lower the parameter count. The block
diagram for the classification network is shown in Fig. 6(a)
and the AKCAL is shown in Fig. 6(b).

AKCAL: The incoming feature map, X ∈ Rx×y×z , is divided
into two feature maps, X1 and X2 ∈ Rx×y×z , encoded via
3 × 3 and 5 × 5 kernels, respectively. The goal of this division
is to extract different scale information using 3 × 3 and
5 × 5 kernels. Increasing the kernel size increases its receptive
area to capture more information from a region but at the cost
of more training parameters. Therefore, only two divisions are
considered with different kernel sizes.

Next, feature maps from both the paths are passed through
an adaptive kernel with a channel feature selection module,
which starts with a convolution-batch normalization-ReLU
block. The kernel t × t for the convolution layer is adaptive
so that the extent of feature interactions is not determined
manually. Adjusting the parameter count allows for optimal
encoding of features. Since the class-specific features are
encoded across channels, we consider a function that defines
a relationship between channel Z and kernel size t . Moreover,
the number of channels is a power of 2; therefore, the
relationship is defined as

Z = 2(ρt)
⇒ t =

log2z
ρ

, ρ is constant. (15)

Subsequently, the module encodes the global features of
each channel via an average weighting scheme given by

Z l
1 =

1
xy

x∑
u=1

y∑
v=1

X l
t×t (u, v). (16)

X l
t×t (u, v) represents the lth feature map after the adaptive

kernel convolution layer. A 1-D convolution layer further
encodes this with an adaptive kernel t and sigmoid activation.
The resulting attention map is multiplied with the input to
this module to emphasize the channel features and outputs the
features X ′

1 and X ′

2 for the two paths, respectively. X ′

1 and
X ′

2 are added and passed through two paths that weight them
(using (16) and (17), respectively) to generate channel-specific
weights

Z l
2 = max

u∈{1,...,x},v∈{1,...,y}

X l
t×t (u, v). (17)

The inclusion of both average and maximal weighting
increases classification accuracy because average weighing
captures the feature map’s soft global characteristics and max-
imal weighting captures their most significant characteristics.
The weighted features are then passed through two dense
layers and their outputs are added together to form an interme-
diate feature map Xint. Xint is passed through a sigmoid layer
to generate the embedding and residual embedding. These
embeddings select classification-relevant channel features. The
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output of the AKCAL is

fcal =
(
embedding ⊗ X ′

1

)
+
(
residual embedding ⊗ X ′

2

)
(18)

where embedding is the weighted and encoded output of the
adaptive kernel channel feature selection module. It is the out-
put of AKCAL’s last sigmoid activation. Residual embedding
represents the residual weighted and encoded output obtained
by subtracting embedding from 1. ⊗ denotes elementwise
multiplication.

C. Loss Function

The proposed architecture uses two loss functions to
optimize the saliency detection and classification models,
as explained below.

1) Loss Function for Saliency Detection: The proposed
saliency detection loss function is a compound function
that segments the hand region, assures its edge continuity
and smoothness, and compensates for foreground–background
class imbalance.

If binary cross entropy (BCE) is used to segment the hand,
categorization is biased toward its background because the
background contains far more image pixels. To compensate for
this bias, we use binary focal loss (BFL) [27]. This reduces the
weight of easily classifiable background pixels in optimization
and increases the weight of foreground pixels. The BFL is
given by

BFL
(
y p, yt)

=

{
−λ1

(
1 − y p)λ2 log

(
y p), yt

= 1
−(1 − λ1)

(
y p)λ2 log

(
1 − y p), otherwise.

(19)

y p and yt stand for the predicted and target probabilities,
respectively. λ1 compensates for the class imbalance, and
λ2 reduces the contribution of background pixels and increases
that of foreground pixels.

Moreover, delineating the hand region is essential for accu-
rate segmentation, especially for finger regions. The finger
regions are narrow and easily affected by background clutter
and skin areas, leading to rough edges along the boundary.
This must be smoothed for precise delineation by energy
reduction along the hand edges. Thus, we propose a loss
function that smooths the edges, given by

Lsmoothing =

∑
(i, j)∈I

√
|
(
∇ y p

xij

)2
+
(
∇ y p

yij

)2
| (20)

where ∇ y p
xij and ∇ y p

yij represent the gradient along the hor-
izontal and vertical directions, respectively. The index set I
contains the coordinates of the elements of y p.

The shape information of the hand is also crucial. Hand
skeleton information helps maintain its shape’s integrity by
preventing hand parts from being segmented owing to occlu-
sion, slender foreground regions, and background clutter.
To ensure hand structure connectedness, we use centerline
dice [28] together with the Dice coefficient, which measures
the resemblance between the saliency mask and true mask.
Here, the skeletons of the saliency mask (SP ) and true mask
(ST ) are calculated, and the intersection of the two masks is

Fig. 7. PAS.

determined. This intersection is iteratively improved and helps
assure structural connectedness of different parts of the hand.
The loss is mathematically represented as

Lskdice = α1

(
1 −

2|y p
⊗ yt

|

|y p| + |yt | + ϵ

)

+ α2

1 −

2
(

|SP⊗yt
|

|SP |+ϵ
×

|ST ⊗y p
|

|ST |+ϵ

)
|SP⊗yt |

|SP |+ϵ

 (21)

where α1 = α2 = 0.5, ⊗ indicates elementwise multiplication,
and |.| represents the set’s cardinality.

The proposed combined loss functions is given by

Lsaliency = BFL + Lsmoothing + Lskdice. (22)

2) Loss Function for Classification: Categorical cross-
entropy is used for classification loss, given by

Lclass =

|classes|∑
j=1

|samples|∑
i=1

yt
ij log y p

ij . (23)

IV. PATIENT ASSISTANCE SYSTEM

The PAS is a novel application of the proposed method,
which lets patients convey specific messages to the medical
staff when they need assistance. The PAS’s interface is shown
in Fig. 7, and the setup is shown in Fig. 2. This system is
convenient for patients who are bedridden or otherwise lack
mobility. It is operated by hand gestures that involve simple
finger arrangements. The ten available gestures are visible on
the interface to help patients with gesturing. They correspond
to the ten classes in the dataset on which the classification
method was trained and the ten messages, shown in Fig. 8.

The patients gesture the specific hand gesture according to
their needs, and the PAS recognizes it. The PAS captures
the patient’s hand gesture through the in-built camera of a
tablet mounted on a stand above the bed the patient is lying
on. The tablet displays the interface where the patient can
get the live feed of gesturing. Once the patient gestures, the
PAS’s interface runs the proposed saliency detection algorithm
to transform the color image into a binary image containing
the hand and background and passes it to the proposed
classification stage to obtain the class label. All this is done
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Fig. 8. Messages and their corresponding gestures.

TABLE II
TRAINING DETAILS

in the processing unit of the tablet/computer. Finally, the
message assigned to the recognized gesture is transmitted via
the wired or wireless communication link to the medical staff’s
computer. Upon receiving the message, it is forwarded to the
staff member who can address it. Simultaneously, the medical
staff acknowledges it by text, which the system converts into
speech and plays in the patient’s room. This assures patients
that their requests are being attended to. Moreover, there is
a bell attached to the system for the message “SOS” when
the patient needs immediate attention. This is a more effective
way to communicate than pressing a call button because the
patient can convey different messages.

V. EVALUATION AND RESULTS

This section reports the evaluation of the proposed archi-
tecture based on the quantitative and qualitative results. The
datasets are also described. Training information is given in
Table II. The F1-score and mean intersection over union
(mIoU) were adopted as the performance measure for saliency
detection and accuracy for classification. They are defined as
follows:

F1-score =
2

|cls|

∑|cls|
i=1

Aii∑|cls|
j=1Aji

×
∑|cls|

i=1
Aii∑|cls|
j=1Aij∑|cls|

i=1
Aii∑|cls|
j=1Aji

+
∑|cls|

i=1
Aii∑|cls|
j=1Aij

(24)

mIoU =
1

|cls|

|cls|∑
i=1

Aii∑|cls|
j=1Aij +

∑|cls|
j=1Aji −Aii

(25)

Accuracy =

∑
i Aii∑

i, j Aij
(26)

where A denotes the confusion matrix, and |cls| denotes
the number of classes. Average precision is given

by (1)/(|cls|)
∑

i (Aii)/(
∑

j Aji) and average recall by
(1)/(|cls|)

∑
i (Aii)/(

∑
j Aij).

A. Datasets

Five datasets were used in the proposed work: 1) Ouhands
[8]; 2) NUS [9]; 3) HGR [4], [5]; 4) HIU [6]; and
5) Egohands [7]. However, Ouhands and NUS contain labels
for classification and HGR, HIU, and Egohands do not.
Therefore, we evaluate saliency detection using the Ouhands,
HGR, HIU, and Egohands datasets and classification using the
Ouhands and NUS datasets. The five datasets are described
below.

The Ouhands static hand gesture dataset comprises color
images, segmentation masks, depth images, and hand bound-
ing box annotations for ten classes. The dataset consists of
3000 color images contributed by 23 subjects.

The HGR dataset combines three datasets: 1) HGR1;
2) HGR2A; and 3) HGR2B. The first dataset contains
899 images and 25 classes, the second dataset contains
85 images and 13 classes, and the third contains 574 images
and 32 classes. The datasets include segmentation masks and
hand-joint locations for each image.

NUS is a set of datasets with ten classes. NUS I comprises
images with uniform backgrounds and is thus excluded. How-
ever, NUS II comprises images with all the challenges encoun-
tered in hand gesture recognition. It contains 2000 color
images and another 750 images that include human skin
regions other than the hands.

The HIU dataset contains 33 000 color images, correspond-
ing hand segmentation masks, and hand-joint locations.

Egohands is a segmentation dataset with 48 videos taken
from a first-person viewpoint. There are 4800 annotated
frames containing multiple hands, which complicates hand
segmentation.

Every dataset contains challenges, such as occlusion, back-
ground clutter, and varying lighting conditions and pose
angles. Image resolution varies by dataset and is scaled to
a uniform spatial dimension before feeding the image to the
model. For the ablation study, we use the Ouhands dataset
unless it is specified otherwise.

B. Experiments and Results

Table III reports the effect of dividing the Q, K, and V into
groups of different sizes on the saliency detection model’s
performance. Based on observation, the division of the matri-
ces into two groups reports the maximum F1-score. Since this
resulted in better saliency maps, two groups were selected even
though three groups resulted in a slightly lower inference time.

The contribution of the loss functions in optimizing the
saliency detection model is shown in Table IV. The BFL
produced a better F1-score than BCE, so it was used to
combine the other losses. The table shows that the combination
of Lsmoothing and Lskdice with BFL produced the best result.
Thus, this combination is retained.

Moreover, the proposed saliency detection model was com-
pared with a few baseline models, as shown in Table V. The
proposed saliency detection method performs better than the
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TABLE III
PERFORMANCE OF THE SALIENCY DETECTION MODEL FOR DIFFERENT

NUMBERS OF GROUPS OF Q,K, AND V

TABLE IV
PERFORMANCE OF THE PROPOSED SALIENCY DETECTION MODEL WITH

VARIOUS LOSS FUNCTIONS

TABLE V
COMPARISON OF DIFFERENT BASELINE MODELS WITH THE

PROPOSED SALIENCY MODEL

other techniques. Its F1-score, mIoU, and inference time are
the best among the compared models, and its parameter count
is also low, second only to HGR-Net.

The qualitative result of the saliency detection method for
four datasets is shown in Fig. 9. The results indicate that the
saliency maps are robust despite the variations in illumination,
occlusion, and the presence of skin regions and background
clutter. Moreover, they produce good segmentation results for
multiple hands. Thus, this preprocessing step is efficient and
effective and can be combined with the classification step
without substantially increasing memory complexity.

The recognition rate of the proposed method is high
with an accuracy of 93.8% and 98.0% for Ouhands and
NUS II, respectively. The use of the saliency map helped
achieve phenomenal results because it mitigated the major
challenges encountered in hand gesture recognition. As shown
in Table VI, using a pretrained VGG16 [41] network on
saliency detected images yielded better results than on RGB
images. Similarly, an architecture similar to the encoder part of
the saliency detection method (termed as encoder) performed
better with saliency maps than color images. This indicates the

Fig. 9. Saliency maps for different datasets. The first column shows the
color images, the second column shows the ground truth, and the third column
shows the detected salient regions. (a) Saliency map for the Ouhands dataset.
(b) Saliency map for the HGR dataset. (c) Saliency map for the HIU dataset.
(d) Saliency map for the Egohands dataset.

benefits of using saliency maps. Moreover, we tried different
combinations, such as attaching different feature-enhancing
modules to the encoder. The performance is recorded in
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TABLE VI
PERFORMANCE COMPARISON OF BASELINES WITH DIFFERENT

COMBINATIONS OF SUPPORTING MODULES

TABLE VII
PERFORMANCE FOR DIFFERENT VALUES OF RHO TO DETERMINE

OPTIMAL ADAPTIVE KERNEL SIZE t

TABLE VIII
PERFORMANCE COMPARISON FOR DIFFERENT

WEIGHTING SCHEMES IN AKCAL

Fig. 10. Effect of AKCAL. Top: without AKCAL. Bottom: with AKCAL.

Table VI. The AKCAL encoder had the best performance with
93.8% accuracy.

Also, there is a hyperparameter ρ associated with the adap-
tive kernel size of AKCAL. We experimented with different
values of ρ and found that ρ = 2 had the best result (shown
in Table VII). The advantage of using weighting schemes is
shown in Table VIII. The best performance is derived when
both the average and max weighting schemes are used. The
effects of using AKCAL are depicted in Fig. 10. AKCAL
resulted in a packed heatmap instead of a dispersed one,
as shown in Fig. 10 (bottom). The intuition behind using
AKCAL is that channel attention focuses on what to attend
in a feature map. We showed the heatmap of input images
to illustrate what locations the proposed network focus on
to learn classification-related features in the presence and
absence of the AKCAL layer. The AKCAL helps the network
focus on only the hand region and not capture features from

Fig. 11. Confusion matrix. Left: Ouhands. Right: NUS.

TABLE IX
COMPARISON OF THE PROPOSED CLASSIFICATION METHOD

WITH THE STATE-OF-THE-ART METHODS FOR THE
OUHANDS AND NUS DATASETS

TABLE X
STUDY OF THE PERFORMANCE OF FIVE USERS FOR FIVE

ATTEMPTS ON PAS INTERFACE

the adjoining background region. This results in the com-
pact heatmap. But, without the AKCAL layer, the resulting
heatmap does not converge on the hand region, suggesting that
noisy information is also encoded. This reduces the recognition
accuracy.

The confusion matrix for the two datasets is shown in
Fig. 11. Table IX shows comparison of some of the state-of-
the-art methods with the proposed method, and it is observed
that the proposed method performs better than the others.
It further accentuates the robustness of the proposed method.

Moreover, five users were asked to operate the interface
in the laboratory environment and test its reliability. Due
consent from the users and the institute’s ethics committee
was taken for the experiments. The users were asked to keep
their arms still while performing the gestures displayed on
the interface five times. The mean accuracies of the gestures
for each attempt are recorded in Table X. The accuracy
ranged from 89.0% to 92.1%, which indicates the reliability
and effectiveness of the PAS system. However, for failed
cases, the users were asked to perform the gesture to call a
nurse or a family member. Thus, the interface would present
a way to establish communication even if a gesture was
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Fig. 12. PAS output for users performing the gestures in the laboratory
environment. The first column shows the image frames captured by the setup
shown in Fig. 2, the second column shows the predicted saliency map, the
third column shows the classification results, and the fourth column shows
the messages associated with the classes.

Fig. 13. Feedback response of the patients about the PAS.

misrecognized. This is facilitated by a confirmation message
after each gesture, which displays “yes” and “no” options. The
user must select the desired option to proceed. In this case,
“yes” is selected by an open hand gesture (class 5) and “no” by
a fist (class 10). We also took a few real-scene images of the
users to verify our proposed approach. As shown in Fig. 12, the
PAS associated the correct messages with the gestures posed
by the users. It shows that the system is operable in a real
scenario and performs reliably.

We further prepared the following questionnaire to obtain
feedback about the usefulness of the PAS.

1) The proposed system is operable without help after the
initial demonstration of the system.

2) The proposed system is useful and gives a satisfactory
feel.

3) The proposed system will be used by the patients again.
4) The proposed system is useful for medical staff and

reduced miscommunication (due to a medical staff
attending to a request he cannot address).

5) The proposed system needs more functions and
improvement.

The results are summarized in Fig. 13. For the most part,
the patients found the system operable and useful, and they
would consider using it again. They also pointed out that they
would appreciate further advancement related to its speed of
operation and increased functionality.

VI. CONCLUSION

A hand-gesture-controlled PAS is proposed, which uses a
two-stage hand recognition architecture to combine the bene-
fits of a convolution and transformer architecture. We devel-
oped a novel saliency detection method that largely overcomes
the challenges posed by vision-based hand gesture recognition,
such as occlusion, background clutter, varying illumination,
and the presence of skin regions. The saliency map thus
obtained highlighted the hand region and was fed to the
classification network. This network used an AKCAL that
emphasized the features relevant for classification. The recog-
nition accuracy for the two benchmark datasets was 93.8%
and 98.0%, which highlights the preciseness of the proposed
approach. The PAS uses this recognition approach and assists
the patients in communicating their needs to the medical
staff. The patient can send ten different messages using this
system, which the call button commonly found in hospitals
cannot.

Limitations and Future Work: The proposed system is a two-
stage system, making the second stage dependent on the first
stage for the best output. Therefore, it can achieve inference
time suitable for online applications (<25 or 30 frames/s),
not real-time (=25 or 30 frames/s). In the future, we will
develop a single-stage architecture that can achieve real-time
performance. The system tends to underperform if many skin
objects are available in the background (like multiple faces or
hands). However, the patient’s hand is the only skin object
the system is likely to capture in a hospital environment.
Nevertheless, we will work on achieving better performance
in the presence of multiple skin objects. Moreover, the PAS
could incorporate more messages to improve communication
between the patient and medical staff further. Also, it could
incorporate automatic dizziness detection and alert the medical
staff if the patient lapsed into unconsciousness.
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