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A B S T R A C T

We designed an interface to support hand rehabilitation tasks to restore hand function and relieve discomfort.
The interface requires accurate hand segmentation, which is impeded by background clutter, occlusion,
and variations in illumination. To overcome these challenges, we propose a novel encoder–decoder that
segments the hand by encoding spatial and channel correlations using two attention blocks. This approach
requires much less computation than benchmark self-attention mechanisms. Moreover, a novel loss function
optimizes the model to resolve class imbalance, ensure boundary smoothness, and retain the hand’s shape. The
quantitative and qualitative results show the model’s ability to segment the hands. It performed exceptionally
well for images with different hand poses and orientations, the presence of a human face, background clutter,
specularity, and variations in illumination. The model attained an F1-score of 97.3% for the Ouhands and
99.3% for the HGR dataset, higher than baseline models, with faster inference times. Furthermore, the model
could generalize hand segmentation to multiple hands and unseen environments. Its segmentation precision
enabled the development of the hand rehabilitation interface, which guided users to perform hand exercises.
For five weeks, patients steadily improved hand function while using the interface.
1. Introduction

Hands play an essential role in daily activities. They support com-
munication among people, especially those who are deaf or mute and
rely on sign language (Adaloglou et al., 2022; Chakraborty et al.,
2018; Mitra & Acharya, 2007). For this community and the general
population, gesture recognition is finding many applications. It lets peo-
ple operate contactless interfaces for teleconferencing, presentations,
home appliances, robots, and drones. However, tremors, stiffness, and
spasticity resulting from injuries, nerve and muscle complications, and
medical conditions can impair movement, making it hard to use the
hands to interact or perform everyday tasks.

Physical therapy is often effective in restoring hand function (Luo
et al., 2010). An interface for teaching patients simple hand exercises
and guiding their progress should help improve dexterity. However,
such an interface requires the detection of hand movements. This
information can be acquired using wearable devices like data gloves
or electromyography (Mitra & Acharya, 2007). Unfortunately, these
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devices can restrict movement, cause fatigue, and increase pain. Unlike
video cameras, they are not commonly available. Thus, this study uses a
vision-based method to localize hand movements and segment the hand
region. However, the performance of vision-based methods degrades
under such real-world conditions as background clutter, occlusion, vari-
ations in illumination, and overlapping skin regions like the hands and
face (Chakraborty et al., 2018). This work develops a novel architecture
to overcome these barriers and segment the hand region from the
background.

The architecture is incorporated into a human–computer interface
for physical therapy. This interface helps improve hand and finger
mobility by prompting patients to make hand gestures to grab an object
and drag it to a specific location. In addition, the interface prompts
them to traverse a path while remaining within a boundary. These
exercises help stabilize hand movements. Thus, localizing the hand
is the prime objective and it requires accurate hand segmentation. A
schematic diagram describing the entire process is shown in Fig. 1.
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Fig. 1. The schematic representation of the proposed method.
The input image is passed through the segmentation model to obtain
the hand mask. Then, the mask is used to perform rehabilitation tasks
prompted by the interface. Finally, the progress of the patient under-
going the rehabilitation program is monitored for a period of time, and
the usefulness of the hand rehabilitation interface is analyzed.

The proposed segmentation model is inspired by the DANet (Fu
et al., 2019), which uses attention-based spatial and channel attention
for better semantic segmentation. However, the attention modules
used in DANet are memory-intensive. We propose attention modules
requiring much less memory that enhance features belonging to the
hand region and help obtain an accurate hand-segmented image. Our
segmentation model is an encoder–decoder network with two unique
attention blocks. The first generates attention maps for the spatial
dimension to locate the region of interest. The second creates attention
maps for the channel dimension to assign the region to the foreground
(i.e., the hand) or background, focusing on class-specific attributes.
Using an efficient self-attention mechanism (SAM), the spatial feature
attention block (SFAB) encodes the correlation between one position
of a particular channel of the feature map and the remaining positions.
The channel feature attention block (CFAB) correlates a position of the
feature map across the channels using a similar efficient self-attention
mechanism. The input image passes through two blocks in the encoder,
a sequential arrangement of SFAB, convolution block, max-pooling
layer, and CFAB and two blocks in the decoder, a sequential arrange-
ment of convolution block, SFAB, upsampling layer, convolution block,
and CFAB. It also incorporates skip connections from the encoder to
the decoder to pass on fine details and avoid vanishing gradients.
Subsequent sections detail the network’s design and analysis, including
variations on its structure.

This work makes the following contributions:

1. We propose a novel architecture for hand segmentation that
uses an attention mechanism to capture long-range (global)
characteristics and obtain accurate hand masks.

2. The architecture has two novel and efficient attention blocks,
one for spatial features to emphasize the hand’s location and one
for channel features to emphasize the pixel class.

3. A composite loss function is proposed to address class imbalance,
ensure boundary smoothness, and retain the geometric shape of
the hand, especially around the fingers.

4. We developed an interface that guides patients with hand or arm
injuries or a lack of dexterity through hand rehabilitation tasks.
The tasks were designed to help them regain normal hand func-
tion by targeting different muscles and motor nerves. The results
show that the interface significantly improves performance.

5. Our method achieves state-of-the-art performance, both for accu-
racy and computational complexity, on benchmark single-hand
datasets, such as Ouhands and HGR. Moreover, as shown on
2

the NUS II dataset and images containing two hands, it can
generalize.

The paper is arranged into five sections. Section 2 highlights pre-
vious work on segmentation. Section 3 describes the proposed ar-
chitecture, including the SFAB, CFAB, and composite loss function.
Section 4 explains the hand rehabilitation tasks. Section 5 presents
the experiments and the quantitative and qualitative results. Section 6
concludes the paper.

2. Related works

In computer vision and human–robot interaction (Ju et al., 2017),
hand segmentation finds a wide range of applications, requiring hand
pose estimation (Wang et al., 2019) and hand gesture recognition
(Dadashzadeh et al., 2019). It aims to label hand region pixels as
foreground and other pixels as background. Much research has been
performed using designer-specific features. Kawulok et al. (2014a) used
spatial and texture-based features to model the skin region. They gen-
erated skin probability maps and applied linear discriminant analysis
to obtain features discriminating the skin areas, subsequently detecting
the skin regions upon spatial analysis. Khan et al. (2012) analyzed
the effect of color space and illumination on accurately detecting skin
regions. Moreover, they studied the performance of nine skin modeling
algorithms and found that the color constancy algorithm improves skin
detection. An unsupervised approach is adopted by Chakraborty and
Bhuyan (2020) to obtain features that differentiate an image’s skin and
non-skin areas using adaptive discriminative analysis. Although color
and skin-based detection worked for hand segmentation, the spotlight
shifted to deep learning because it promised better and human-level
detection without needing designer-specified features.

In Dadashzadeh et al. (2019), residual blocks and atrous spatial
pyramid pooling blocks produced segmented hand masks, enabling
a classification network to recognize hand gestures. Khan and Borji
(2018) performed hand segmentation in egocentric videos using Re-
fineNet, a deep learning model, and improved the results by employing
conditional random fields. Cai et al. (2020) used a Bayesian convolution
neural network (CNN) to estimate model uncertainty and share hand
shape information across different domains to enable generalization in
hand segmentation. In Dutta et al. (2020), a UNet architecture achieved
the best hand segmentation results for sign language recognition. Yang
and Wu (2019) proposed SPSNet, a novel architecture for hand seg-
mentation that fuses temporal and tracking proposals in depth videos
and reduces the complexity of hand pose estimation. Wang et al. (2019)
proposed a two-stage CNN. The first stage generated a hand mask while
the second estimated hand joints. Tsai and Huang (2022) proposed a
two-stage segmentation network, where the first stage produces a rough
segmentation mask, which is improved by the second stage employing
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a distance method. The first stage is a simplified U-Net architecture
followed by a refined block in the second stage, and the authors named
the complete architecture Refined Simple U-Net. In Ohkawa et al.
(2021), the authors created a source dataset that has been style-adapted
to look like the target dataset. Then, a segmentation model is trained
on the style-adapted dataset and a reference model on the original
dataset. The intersection of the masks generated by the two networks
produces the pseudo labels. These pseudo labels are used to update
the segmentation model again, which eventually generates the required
segmentation hand masks.

Methods from related research areas can be adapted to hand seg-
mentation. Wu et al. (2019) proposed a joint pyramid upsampling tech-
nique for dilated convolution to reduce its complexity and memory re-
quirements for semantic image segmentation. Fu et al. (2019) proposed
DANet, which uses two self-attention mechanisms to capture a scene’s
contextual information. They encode position and channel information,
yielding a feature representation for scene segmentation. Ronneberger
et al. (2015) developed U-Net, an architecture to segment medical
images with vastly fewer training samples. It consists of a contracting
path that encodes context and an expanding path that localizes the
object. An extension, Attention U-Net, was proposed by Oktay et al.
(2018). Its attention gating mechanism focuses on the object of inter-
est, ignoring irrelevant areas. This mechanism was modified by Jin
et al. (2020) to include residual learning. Although these three U-
Net architectures were designed for medical images, they have been
adapted to semantic segmentation because of their exceptional perfor-
mance. Sun et al. (2021) used Gaussian dynamic convolution with a
dynamic receptive field for fast single image segmentation. Baheti et al.
(2020) proposed an encoder–decoder architecture, named Eff-UNet, for
semantic segmentation where the encoder is an EfficientNet and the
decoder is taken from UNet. In Almeida et al. (2021), Mask-RCNN was
used to segment the hands of a humanoid robot in ego-centric images.

Despite these contributions, several challenges remain for hand
segmentation. These include generalizing segmentation to novel images
and maintaining performance given occlusion, exposed skin areas other
than the hand, and variations in illumination. Most works generate seg-
mentation masks at the expense of memory complexity (more training
parameters), involving two-stage computation or post-processing. Also,
the models designed for semantic segmentation do not appropriately
consider the contours of the hand, especially near the fingers, resulting
in a coarse segmentation mask. Hence, we sought to close this research
gap by developing a novel, efficient, and effective solution.

3. Methodology

This section describes the architecture that obtains the segmented
hand region. Also, it discusses the importance of the SFAB and CFAB
modules.

3.1. Overview

Segmentation can be modeled as a pixel-wise binary classification
task with at least two classes—foreground and background. A deep
neural network uses convolution layers to encode the features of the
two classes. In a CNN, each receptive field of the convolution layers is
sensitive to local features in the image. However, it becomes harder for
a CNN to detect patterns at increasing spatial and temporal scales. With
each layer, within-class pattern differences reduce the network’s recog-
nition accuracy. To overcome this, information from distal pixels of the
same class must be integrated. Therefore, we propose an architecture
that encodes distal pixel dependencies using a self-attention mechanism
for spatial and channel dimensions, as shown in Fig. 2.

The spatial feature attention block implements spatial self-attention,
and the channel feature attention block implements channel self-
attention. SFAB integrates the spatial correlations of different pixels
to obtain spatial attention maps that focus on regions likely to contain
3

∈

the object. CFAB complements SFAB by generating attention maps that
focus on the object’s class, capturing correlations among the channels
of the input feature map. The proposed architecture is an encoder–
decoder network with the encoder containing four convolution blocks,
two SFAB and CFAB blocks, and a depthwise convolution layer through
which the output of the encoder is propagated to the decoder. The
decoder also contains four convolution blocks and two SFAB and
CFAB blocks. The output of the decoder passes through a sequential
arrangement of a convolution layer with a 1 × 1 filter size, a batch
normalization layer, and sigmoid activation to obtain the segmented
mask.

The encoder’s sequential ordering is SFAB–convolution block–max-
pooling–CFAB. The intuition behind this ordering is that the SFAB
attends to the object’s regions, and this feature map is passed to
the convolution block. The convolution block thus learns the features
belonging to the foreground region, namely, those of the hand. A
max-pooling layer is placed after the convolution block, followed by a
CFAB. This layer captures distinctive features of each class to improve
channel-specific attention (Woo et al., 2018). A CFAB follows to capture
channel-specific details and accentuates class-dependent features. The
experimental analysis of this arrangement is detailed in section IV-
B. A pair of convolution and batch normalization layers comprise the
convolution block, as shown in Fig. 2. Each convolution layer has a
3 × 3 filter size. The batch normalization layer standardizes the input
feature map to reduce training time.

The input image propagates through a convolution block and a
max-pooling layer to the first SFAB–convolution block–max-pooling–
CFAB sequence. The resulting attention feature maps pass through
another convolution block and max-pooling layer, followed by the
second SFAB–convolution block–max-pooling–CFAB sequence. Before
passing the resultant feature maps to the decoder, a depthwise convo-
lution layer encodes it. The advantage of a depthwise convolution layer
over a standard convolution layer is that it introduces much fewer train-
ing parameters to the deep neural network. The four max-pooling layers
reduce the spatial dimension of the encoder’s output feature maps to
1
16 th the input image. Therefore, the decoder upsamples the feature
maps by a factor of 2 and concatenates the upsampled feature maps
with the output of the previous convolution block, i.e., Conv Block
4. This skip connection incorporates details from the encoder layers
into the decoder layers to arrive at a more refined segmentation mask
at the decoder’s output. The concatenated output is passed through
a convolution block–SFAB–upsampling layer sequence. The resulting
feature map is added with the output of Conv Block 3 and passed
to a convolution block–CFAB–upsampling layer sequence. The output
is then concatenated with Conv Block 2’s output, passed through a
convolution block–SFAB–upsampling layer sequence, and subsequently
concatenated with Conv Block 1’s output. Next, the propagated fea-
ture map is passed through the final convolution block, the CFAB, a
sequence of convolution layer of filter size 1 × 1, a batch normalization
layer, and a sigmoid activation layer to arrive at the final output, that
is, the segmentation mask.

3.2. Self-attention mechanism

The self-attention mechanism models long-range dependencies
(Vaswani et al., 2017). Initially designed for natural language process-
ing, SAMs have been used extensively in computer vision to capture
an image’s global context (Fu et al., 2019; Zhuoran et al., 2021). The
SAM incorporates the global and local context by using convolution. A
pictorial representation of a SAM is shown in Fig. 3.

A feature map 𝐹 ∈ Rℎ×𝑤×𝑐 is reshaped into 𝑋 ∈ Rℎ𝑤×𝑐 and passed
hrough the SAM to obtain the output attention map. Here, ℎ,𝑤, and
represent the feature map’s height, width, and channel. For the 𝑚th
osition of 𝑋, ∃ a vector x𝑚 ∈ R𝑐 . Then, three vectors, namely, the
uery vector x𝑞𝑚 ∈ R𝑑𝑘 , key vector x𝑘𝑚 ∈ R𝑑𝑘 , and value vector x𝑣𝑚

𝑑𝑣
R , are constructed from x𝑚. The SAM estimates the relevance of the
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Fig. 2. The block diagram of the proposed segmentation method.
Fig. 3. Block representation of the self-attention mechanism.
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th position to the 𝑚th position, i.e., the current position, to improve
he current feature vector’s encoding. Thus, the correlation between the
th query vector and the 𝑛th key vector is obtained, i.e., x𝑞𝑚Tx𝑘𝑛 where
∈ 1, 2,… , ℎ𝑤. This dot product results in a score, which is divided

y
√

𝑑𝑘 to stabilize the gradients and then normalized by the softmax
unction to ensure positive scores. This score is represented as

𝑐𝑜𝑟𝑒𝑚𝑛 =
𝑒𝑥𝑝(

𝐱𝑇𝑞𝑚𝐱𝑘𝑛
√

𝑑𝑘
)

∑ℎ𝑤
𝑗=1 𝑒𝑥𝑝(

𝐱𝑇𝑞𝑚𝐱𝑘𝑗
√

𝑑𝑘
)
. (1)

It is the correlation between the position pairs 𝑚 and 𝑛. The score
is multiplied with the 𝑚th value vector x𝑣𝑚 to obtain the weighted
value vector at the 𝑚th position. The weighted value vectors for other
positions are obtained in the same way. Relevant positions are multi-
plied by a large score and are thus brought into focus, while irrelevant
positions are multiplied by a small score and are thus ignored. Finally,
the weighted value vectors are added to obtain a vector xsumm , the
AM’s output for the 𝑚th position, which is expressed as

sum𝑚
=

ℎ𝑤
∑

𝑗=1
𝑠𝑐𝑜𝑟𝑒𝑚𝑗 × 𝐱𝑣𝑗 . (2)

For all the ℎ𝑤 positions, we create the query matrix M𝑞 ∈ Rℎ𝑤×𝑑𝑘 ,
key matrix M𝑘 ∈ Rℎ𝑤×𝑑𝑘 , and value matrix M𝑣 ∈ Rℎ𝑤×𝑑𝑣 . Thus, the
AM’s attention map is given by

utput feature map = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝐌𝑞𝐌𝑇
𝑘

√

𝑑𝑘

)

𝐌𝑣. (3)

For self-attention 𝑑𝑘 = 𝑑𝑣.

3.3. SFAB and CFAB

Although the SAM’s ability to encode long-range dependencies,
its memory usage and high computational complexity are drawbacks.
Determining position-to-position correlation is ((ℎ𝑤)2) for memory
and (𝑑𝑘(ℎ𝑤)2) for computation. Under memory constraints, the SAM
4

can cause an out-of-memory error. Therefore, drawing inspiration
from Zhuoran et al. (2021), we propose two novel efficient attention
blocks that generate attention maps along spatial and channel dimen-
sions. These blocks, namely SFAB and CFAB, reduce memory use from
quadratic to linear.

In this case, the queries M𝑞 , keys M𝑘, and values M𝑣 also exist.
However, instead of calculating the correlations between positions,
each channel of keys is considered a feature map and is multiplied by
the values. This results in a global feature map weighting every position
of the input feature map and highlighting its class-specific features.
Now the queries at each position aggregate the global feature maps
and generate the final attention map that attends to the object’s class
and position.

The SFAB uses this efficient way of calculating attention along
the spatial dimension to focus on the location of the foreground
hand region. At the outset, it arranges the queries, keys, and values
into groups to introduce a parallel and independent way of attend-
ing to different representations of the feature map. Thus, there are
(#𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠∕#𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠) groups. The queries, keys, and values of the first
group are represented as M1

𝑞 , M
1
𝑘, M1

𝑣 ∈ Rℎ𝑤× 𝑑𝑘
#𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 , respectively.

#𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 and #𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 represent the number of channels and divi-
ions, respectively. The associative property of matrix multiplication
nsures (𝐌𝑞𝐌𝑇

𝑘 )𝐌𝑣 = 𝐌𝑞(𝐌𝑇
𝑘𝐌𝑣). However, Zhuoran et al. (2021) state

hat, to realize this matrix associativity with the softmax function, two
oftmax functions are used—one for the queries and the other for the
eys. These two softmax functions resemble the single softmax function
f the SAM and approximate the required normalization. Thus, the
ttention expression for the first group is given by

𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑞(𝐌1
𝑞)(𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘(𝐌

1
𝑘)

𝑇𝐌1
𝑣). (4)

imilarly, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1,… , 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛#𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 are appended together and fed
o a convolution layer of filter size 1 × 1 to obtain the final spatial
ttention map of dimension ℎ𝑤 × 𝑐, as shown in Eq. (5). The SFAB is
llustrated in Fig. 4.

FAB attention map = 𝑐𝑜𝑛𝑣([𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛1, 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛2,

..., 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛#𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠]). (5)
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Fig. 4. Block diagram of the spatial feature attention block (SFAB).
Fig. 5. Block diagram of the channel feature attention block (CFAB).
The CFAB has matrix multiplications like the SFAB but does not
have divisions along channel dimensions to form groups and uses the
entire key, query, and value matrices. Here, the channel relationship
is encoded as attention maps, highlighting the semantics to segment
the foreground hand from the background. Alternatively, it highlights
the correlation between the 𝑚th and 𝑛th channels to attend to class-
specific features. The CFAB is illustrated in Fig. 5, and the final channel
attention map is shown in Eq. (6).

CFAB attention map =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑞(𝐌𝑞)(𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘(𝐌𝑘)𝑇𝐌𝑣), (6)

where the attention map is of dimension ℎ𝑤 × 𝑐 and M𝑞 , M𝑘, M𝑣 ∈
Rℎ𝑤×𝑐 , respectively.

This calculation method reduces memory complexity from ((ℎ𝑤)2)
to (𝑑𝑘ℎ𝑤 + 𝑑2𝑘) and computational complexity from (𝑑𝑘(ℎ𝑤)2) to
((𝑑𝑘)2ℎ𝑤). This avoids a quadratic increase in complexity with the
feature map’s spatial dimensions, and lets the developer set the value
of 𝑐.

3.4. Loss function

During the training of a deep learning model, we minimize a loss
function to learn the model’s optimal weights for a given task. There-
fore, we propose a novel composite loss function that integrates hand
regions, segments the hand’s shape, ensures boundary smoothness and
continuity, and corrects for class imbalance. The loss function has these
three components:

3.4.1. Binary focal loss
Segmentation is a pixel-wise classification task assigning pixels to

the foreground or background. For hand segmentation, the foreground,
i.e., the hand, has fewer pixels than the background because it covers
a small area of the image. Hence, their proportion is imbalanced.
Although binary cross entropy (BCE) has been used for segmentation,
it is biased towards the background class because it has more pixels.
Therefore, we used binary focal loss (BFL) (Lin et al., 2017). BFL
reduces the contribution of background pixels that are easy to classify
5

Fig. 6. An image showing the finger valley and the slender part of the hand (indicated
by cyan arrows →←).

while balancing the contribution of foreground and background pixels
that are hard to classify. BFL develops on BCE, which is given by

𝐵𝐶𝐸(�̂�, 𝑦) =

{

−𝑙𝑜𝑔(�̂�), 𝑦 = 1
−𝑙𝑜𝑔(1 − �̂�), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(7)

where �̂� denotes the predicted probability and 𝑦 denotes the true label.
BFL uses a modulating factor 𝛽 to reduce the contribution of easy-
to-classify pixels to the loss function and amplify the contribution of
hard-to-classify pixels, which would otherwise be low. The balancing
factor 𝛼 corrects for the imbalance in the foreground and background
pixels. Thus, the BFL is defined as

𝐵𝐹𝐿(�̂�, 𝑦) =

{

−𝛼(1 − �̂�)𝛽 𝑙𝑜𝑔(�̂�), 𝑦 = 1
−(1 − 𝛼)(�̂�)𝛽 𝑙𝑜𝑔(1 − �̂�), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(8)

As the probability of correct prediction tends to 1, the scaling factor
tends to 0, making the function resistant to class imbalance.

3.4.2. Smoothing loss
The hand is a deformable object, and the hand region’s boundary in

an image plays a pivotal role in the hand’s accurate segmentation. The
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Fig. 7. The interface layout. Top: the main window. Middle: resulting window on clicking ‘‘Path traverse‘‘ button on the main window. Bottom: resulting window on clicking ‘‘Fit
& grab’’ button on the main window.
fingers need attention to obtain an accurate segmentation mask because
of their slender shape and constricted regions relative to the palm.
For instance, the segmentation mask may not be smooth around finger
valleys, as shown in Fig. 6, owing to other skin regions, constricted
regions, or background clutter. This may result in a coarse boundary
in the finger region with some breaks. If discontinuities occur, the
hand’s boundary should be smoothed by reducing the energy along it
to maintain continuity. Thus, we define a loss function to smooth the
boundary of the segmented mask, given by

𝓁smooth =
∑

𝑖,𝑗∈�̂�

√

|(∇�̂�𝑢𝑖𝑗 )
2 + (∇�̂�𝑣𝑖𝑗 )

2
| , (9)

where 𝑢𝑖,𝑗 and 𝑣𝑖,𝑗 denote the horizontal and vertical directions of the
image coordinates, respectively. ∇ is the gradient operator.
6

3.4.3. Dice loss with skeletal information
The Dice coefficient estimates the similarity between the predicted

mask and ground truth. However, it ignores the hand’s shape and
continuity. This information is useful because the fingers are slender
and often occlude each other, which can cause a segmented region to
become disconnected from the main hand segmentation mask. Thus,
information about the skeleton of the hand would help the predicted
hand regions stay connected despite occlusion, narrow regions, or
background clutter. We used the centerline Dice (Shit et al., 2021) with
the Dice coefficient to obtain the hand’s connectivity and structure. The
centerline Dice calculates the skeletons of the predicted mask and the
ground truth, denoted by 𝑆𝑃 and 𝑆𝑇 , respectively. It attends to the
intersection of the skeletons with the masks and determines the part



Expert Systems With Applications 234 (2023) 121046H.P.J. Dutta et al.
Fig. 8. The interface shows the task of traversing through a predefined boundary. The top row shows proper traversing with a good score, and the bottom row shows improper
traversing with a bad score.
of the skeletons that lie in the masks. The skeletal information holds
the predicted mask together and iteratively improves it. Thus, the Dice
loss with the skeletal information can be defined as

𝓁skdice =𝜅1

(

1 −
2|�̂� ⊙ 𝑦|

|�̂�| + |𝑦| + 𝜖

)

+ 𝜅2

⎛

⎜

⎜

⎝

1 −
2( |𝑆𝑃⊙𝑦|

|𝑆𝑃 |+𝜖
× |𝑆𝑇⊙�̂�|

|𝑆𝑇 |+𝜖
)

|𝑆𝑃⊙𝑦|
|𝑆𝑃 |+𝜖

⎞

⎟

⎟

⎠

, (10)

where 𝜅1 and 𝜅2 are constants set to 0.5. Additionally, ⊙ refers to
element-wise multiplication, and |.| refers to the cardinality of the set.

Now, given the three loss functions defined above, we formulate the
novel composite loss function given by

𝓁total = 𝐵𝐹𝐿 + 𝓁smooth + 𝓁skdice. (11)

4. Hand rehabilitation tasks

This section describes the interface that uses the hand segmentation
results to train users to overcome hand or arm movement difficulties
due to injury or other motor complications. The interface asks the users
to perform therapeutic tasks involving muscles and nerves, such as
flexor and extensor muscles, brachial plexus, radial, ulnar, and median
nerves for flexion, extension, abduction, adduction, and other hand
movements. The overall layout of the interface is shown in Fig. 7. The
user is asked to perform two tasks: traverse a specific path, as shown
in Fig. 8, and then grab a virtual object using a gesture and drop it at
a specified location on the screen with a different gesture, as shown in
Fig. 9. Both tasks are detailed below.

1. Path traversing task: This task trains the user to traverse a
defined path while staying within the boundary of the path. The
segmented hand mask’s centroid (𝑐𝑥, 𝑐𝑦) is monitored while the
hand moves between the two rectangle boundaries. Instances
of proper and improper traversing between the boundaries are
shown in Fig. 8. The centroid is calculated using (12).

𝑐𝑥 =
∑

𝑥
∑

𝑦 𝑥𝐼𝑠(𝑥, 𝑦)
∑ ∑ , 𝑐𝑦 =

∑

𝑥
∑

𝑦 𝑦𝐼𝑠(𝑥, 𝑦)
∑ ∑ (12)
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𝑥 𝑦 𝐼𝑠(𝑥, 𝑦) 𝑥 𝑦 𝐼𝑠(𝑥, 𝑦)
where 𝐼𝑠(𝑥, 𝑦) is the pixel intensity of the segmented mask 𝐼𝑠 at
location (𝑥, 𝑦). This task enables users to stabilize their move-
ment and exercise their arm muscles. A score is also displayed
as a percentage to quantify proper traversing, helping the user to
track performance. The score is the number of times the hand’s
centroid moves within the path divided by the number of times
it appears on the screen.

2. Fit and grab task: This task targets hand muscles and nerves af-
fected by a hand injury and improves finger strength. A contour
appears at a random location, and the user is asked to trace it.
An intersection over union (IoU) score estimates how accurately
the user traces the contour. Initially, the user may have difficulty
tracing the shape. However, with practice, the user can gradually
trace it and improve the IoU score. Once the score is above 60%,
the user can grab the object (a rectangle) appearing within the
contour, drag it to a specified location, and drop it. To drop the
object, the user must close the fist inside a rectangular frame on
the screen. The interface depicting this procedure is shown in
Fig. 9. Fig. 10 shows an example of a good fit and a bad fit. Only
for a good fit does the virtual object appear for grabbing. The
contours have different shapes involving different fingers and
gesture poses. This ensures the user performs various exercises
to strengthen hand and finger operation.

5. Experiments and results

This section describes experiments to evaluate the proposed model,
the datasets, and the quantitative and qualitative results. The algorithm
is implemented in Python, and the model is trained using an Nvidia
Tesla P100 GPU. The training details are shown in Table 1. A uniform
image size is chosen for the datasets. The learning rate, batch size,
epochs, and 𝑑𝑘 are determined using randomized search (Bergstra &
Bengio, 2012), and the 𝛼 and 𝛽 values are retained from Lin et al.
(2017). We initialize a random number generator with a fixed seed to
set the initial weights to ensure the results can be reproduced. Also,
we use a uniform weight initialization scheme, i.e., Xavier uniform
initializer, to maintain near identical variances of its weight gradients
across model layers. To quantify model performance, we adopt the
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Fig. 9. The interface showing the task of fitting a gesture to grab an object and drop it at a specific location.
Fig. 10. Left: an instance of bad fit, where the virtual object does not appear. Right: an instance of good fit, which causes the virtual object to appear at the centroid of the hand.
Fig. 11. A plot showing the mIoU score for the four datasets.

F1-score given by

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑁

∑𝑁
𝑖=1

𝑀𝑐𝑜𝑛𝑓
𝑖𝑖

∑𝑁
𝑗=1 𝑀

𝑐𝑜𝑛𝑓
𝑗𝑖

×
∑𝑁

𝑖=1
𝑀𝑐𝑜𝑛𝑓

𝑖𝑖
∑𝑁

𝑗=1 𝑀
𝑐𝑜𝑛𝑓
𝑖𝑗

∑𝑁
𝑖=1

𝑀𝑐𝑜𝑛𝑓
𝑖𝑖

∑𝑁
𝑗=1 𝑀

𝑐𝑜𝑛𝑓
𝑗𝑖

+
∑𝑁

𝑖=1
𝑀𝑐𝑜𝑛𝑓

𝑖𝑖
∑𝑁

𝑗=1 𝑀
𝑐𝑜𝑛𝑓
𝑖𝑗

, (13)

where 𝑀𝑐𝑜𝑛𝑓 denotes the confusion matrix for the binary class prob-
lem (segmentation), and 𝑁 denotes the number of classes (= 2).
Average precision is given by 1

𝑁
∑

𝑖
𝑀𝑐𝑜𝑛𝑓

𝑖𝑖
∑

𝑗 𝑀
𝑐𝑜𝑛𝑓
𝑗𝑖

, and average recall by

1
𝑁

∑

𝑖
𝑀𝑐𝑜𝑛𝑓

𝑖𝑖
∑

𝑗 𝑀
𝑐𝑜𝑛𝑓
𝑖𝑗

.

5.1. Datasets

5.1.1. Ouhands
Ouhands (Matilainen et al., 2016) is a hand gesture dataset with

around 3000 color images evenly distributed among 10 classes of
8

Fig. 12. Segmentation results for the Ouhands dataset. The first column contains the
input color image, the second contains the ground truth masks, and the third contains
the segmented masks.

hand gestures. A total of 23 subjects provided data with varying hand
sizes, pose angles, and illumination and with occlusion and background
clutter. The dataset comprises annotated hand masks, hand depth
images, and each image’s annotated hand bounding box coordinates.
The images are 480 × 640 pixels.
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Fig. 13. Segmentation results for HGR datasets: (a) HGR1, (b) HGR2a, and (c) HGR2b.
The first column contains the input color images, the second contains the ground truth
masks, and the third contains the segmented masks.

5.1.2. HGR

The hand gesture recognition dataset (Grzejszczak et al., 2016;
Kawulok et al., 2014b; Nalepa & Kawulok, 2014) divides into three
parts: HGR1 contains 899 images and 25 classes, HGR2 A contains 85
images and 13 classes, and HGR2B contains 574 images and 32 classes.
9

Fig. 14. In these qualitative results, red circles indicate challenging conditions, and
arrows indicate specularity and backlighting.

Fig. 15. Segmentation results for the NUS II dataset with a model trained with
Ouhands.

Table 1
Training details.

Image shape 320 × 320 × 3
Optimizer Adam Optimizer
Learning rate 0.0001
𝛼 and 𝛽 (for BFL) 0.25 and 2 (from Lin et al. (2017))
Batch size 8
Epochs 20
𝑑𝑘 = 𝑑𝑣 [16, 64] for encoder,[128, 32] for decoder

Each image has ground truth skin masks and hand keypoint locations.

The dataset’s resolution, background, and lighting vary by set.
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Fig. 16. Segmentation results for images with two hands.

Table 2
Performance comparison for different arrangements of the SFAB and
CFAB in the architecture.

Sequence F1-score (%) Inference time (ms)

No SFAB or CFAB 95.03 16.27
Only SFAB 95.45 16.15
Only CFAB 95.19 16.35
SFAB → CFAB 97.03 16.54
CFAB → SFAB 96.49 17.05
SFAB ∥ CFAB 96.35 16
SFAB → Conv → CFAB 97.33 15.03

Table 3
Performance of the model for different numbers of groups
created from the SFAB’s input feature map.

Number of groups F1-score (%) Inference (ms)

1 group 96.47 17.8
2 groups 97.33 15.03
3 groups 96.20 14.4
4 groups 96.01 14.9
5 groups 95.86 14.8

5.2. Placement of self-attention blocks

The SFAB attends to the object’s position in the input image, and
the CFAB to its class (i.e., foreground or background). The blocks can
be arranged sequentially or in parallel to obtain optimal encoder–
decoder performance. Thus, we consider six arrangements: No SFAB
or CFAB, Only SFAB, Only CFAB, SFAB–CFAB, CFAB–SFAB, SFAB and
CFAB in parallel, and SFAB–convolution block–CFAB. Table 2 lists
the architecture’s performance for these arrangements. Using atten-
tion blocks gives better results than using no blocks or only one
block. The blocks achieve a better F1-score when arranged in series
than in parallel. Moreover, when the SFAB is placed ahead of CFAB,
performance improves. Including a convolution block between SFAB
and CFAB increases performance by 0.3%. A max-pooling layer was
tested in SFAB–Conv–CFAB because it captures class-specific features.
Similarly, an upsampling layer was included in the decoder. However,
its inclusion had little impact on performance.

Table 3 presents the effect of dividing the SFAB into varying num-
bers of groups. The F1-score was highest for two groups and then
decreased for more groups, while the inference time was lowest for
three groups. To maximize accuracy, we divided the incoming feature
map into two groups, resulting in an F1-score of 97.33% with an
inference time of 15.03 ms. We opted for the best F1-score, giving more
weight to segmentation mask accuracy than speed, forfeiting a 0.63 ms
decrease in inference time.
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Table 4
Performance of the proposed model with
different loss functions.

Losses F1-score (%)

BCE 96.49
BFL 96.93
BFL + 𝓁smooth 97.10
BFL + 𝓁skdice 97.25
BFL + 𝓁smooth + 𝓁skdice 97.33

Table 5
Comparison of different baseline models with the proposed model.

Methods F1-score (%) mIoU (%) Inference time (ms)

U-Net (Ronneberger et al., 2015) 96.7 81.2 25
Attention U-Net (Oktay et al., 2018) 96.8 85.5 29
RA-UNet (Jin et al., 2020) 96.9 84.9 32
FCN-8s (Long et al., 2015) 95.5 80.3 63
CBAM (Woo et al., 2018) 96.3 82.9 38
DANet (Fu et al., 2019) 96.4 83.6 35
Ours 97.3 89 15

5.3. Performance of the loss components

This subsection explains how the loss functions contributed to
achieving a state-of-the-art result. Because BFL performed better than
BCE, the contributions of 𝓁smooth and 𝓁skdice were tested for BFL.
Further experimentation revealed that, although 𝓁smooth and 𝓁skdice
contributed to a good F1-score, the combination of BFL, 𝓁smooth, and
𝓁skdice resulted in even better performance. Table 4 lists the model’s
performance for different loss functions.

5.4. Comparison with baseline models

The proposed model’s performance was validated by comparing it
with a few baseline architectures. The performance of encoder–decoder
models with attention, such as Attention U-Net (Oktay et al., 2018)
and RA-UNet (Jin et al., 2020) surpassed the performance of simple
encoder–decoder models, such as U-Net (Ronneberger et al., 2015)
and FCN (Long et al., 2015). Therefore, we included more attention-
based models for comparison, such as CBAM (Woo et al., 2018) and
DANet (Fu et al., 2019). We chose these six deep neural networks as
baselines because their encoder–decoder architecture with attention
is similar to ours. A novel network should perform better than the
baselines to show its contribution. The results in Table 5 indicate that
the proposed network performed better than the baselines, considerably
improving inference time. Inference time was 10 ms faster than U-Net,
the second-fastest architecture, because of our model’s efficient spatial
and channel attention. The F1-score was 0.6% higher than RA-UNet,
which had the second-highest F1-score. Also, the mIoU value was much
higher than for other models, 3.5% higher than the second highest.

Moreover, we conducted a Friedman tests to determine whether
differences in model performance were statistically significant. Table 6
compares the models for the Ouhands, HGR, and NUS datasets, ob-
taining a 𝑝-value of 0.000335. Since the 𝑝-value is less than the alpha
value (= 0.05), we can reject the null hypothesis and conclude that the
difference in model performance is significant.

5.5. State-of-the-art comparison

We also compared the proposed model with state-of-the-art hand
segmentation approaches. Tables 6 and 7 list the performance of the
state-of-the-art methods for the Ouhands and HGR datasets, respec-
tively. For the Ouhands dataset, the proposed model and DeepLabv3
(Chen et al., 2017) were tied for the highest F1-score at 97.3%. How-
ever, the mIoU value of 89% is the best among other competing models.
At 15 ms, the proposed model outperformed all others for inference
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Table 6
Comparison of the proposed method and state-of-the-art methods for the Ouhands dataset.

Methods F1-score (%) mIoU (%) Inferencetime (ms) #Parameters

FCN-8s (Long et al., 2015) 95.5 80.3 63 134 M
PSPNet (Zhao et al., 2017) 97.0 80.2 50 79.44 M
DeepLabv3 (Chen et al.,
2017)

97.3 87.3 43 75.30 M

HGR-Net (Dadashzadeh
et al., 2019)

96.3 82.6 21 0.28 M

CBAM (Woo et al., 2018) 96.3 82.9 38 7.97 M
DANet (Fu et al., 2019) 96.4 83.6 35 7.56 M
U-Net (Ronneberger et al.,
2015)

96.7 81.2 25 7.86 M

Segment Anything (Kirillov
et al., 2023)

79.44 79.77 38 641.09 M

Ours 97.3 89.0 15 1.02 M
Table 7
Comparison of the proposed method and state-of-the-art methods for the HGR dataset.

Methods F1-score (%) mIoU (%) Inferencetime (ms) #Parameters

Hettiarachchi and
Peters (Hettiarachchi & Peters,
2016)

96.9 – – –

Kawulok et al. (2014a) 95.6 – – –
Kawulok (2013) 90.8 – – –
FCN-8s (Long et al., 2015) 97.7 91.2 63 134 M
PSPNet (Zhao et al., 2017) 98.7 94.0 50 79.44 M
DeepLabv3 (Chen et al., 2017) 98.8 97.2 43 75.30 M
HGR-Net (Dadashzadeh et al.,
2019)

98.2 95.8 21 0.28 M

OR-Skip_net (Arsalan et al.,
2020)

96.9 94.3 38 9.72 M

Lumini et al. (Lumini &
Nanni, 2020)

96.7 – – –

Segment Anything (Kirillov
et al., 2023)

92.8 94.7 39 641.09 M

Ours 99.3 98.3 10 1.02 M
time. The proposed model had the second-fewest parameters after
HGR-Net (Dadashzadeh et al., 2019).

For the HGR dataset, the proposed model performed phenomenally,
attaining an F1-score of 99.3% and mIoU of 98.3% in 10 ms, surpassing
state-of-the-art methods.

Fig. 11 shows the mIoU scores for the datasets used. mIoU is a useful
metric to quantify the accuracy of the segmented mask, and is given by

𝑚𝐼𝑜𝑈 = 1
𝑁

𝑁
∑

𝑖=1

𝑀𝑐𝑜𝑛𝑓
𝑖𝑖

∑𝑁
𝑗=1 𝑀

𝑐𝑜𝑛𝑓
𝑖𝑗 +

∑𝑁
𝑗=1 𝑀

𝑐𝑜𝑛𝑓
𝑗𝑖 −𝑀𝑐𝑜𝑛𝑓

𝑖𝑖

. (14)

The mIoU scores for the Ouhands, HGR1, HGR2a, and HGR2b datasets
were 0.89, 0.98, 0.98, and 0.99, respectively.

5.6. Qualitative assessment

Figs. 12–17 show the qualitative results of the proposed method.
Fig. 12 displays the segmentation results for the Ouhands dataset. The
results show the hand’s shape (column 3). It has a smooth boundary
without any gaps. Similarly, Fig. 13 shows the predicted segmentation
masks for the HGR datasets (column 3). The proposed model per-
formed exceptionally well for images with different hand poses and
orientations, the presence of a human face and background clutter,
variations in illumination, and specularity. This is shown in Fig. 14,
which highlights challenging conditions with an arrow or circle. Owing
to the attention mechanism, the model does not deviate from the region
of interest. Normalization and using geometrically altered training
samples make the model robust against changes in light, orientation,
and scale.

Moreover, we tested the model trained with the Ouhands dataset
with the NUS II dataset (Pisharady et al., 2013). NUS II is a 10-
class hand gesture recognition dataset that lacks segmentation masks.
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Fig. 17. Some failed segmentation cases.

However, the segmentation results in Fig. 15 were encouraging. Despite
background clutter, the model performed well. The model was also
tested on supplementary data samples from Ouhands containing two
hands in an image. Fig. 16 shows that the segmentation masks are
precisely detected even for two hands.

Thus, the quantitative and qualitative results highlight the proposed
method’s ability to perform hand segmentation accurately and effi-
ciently. However, the model failed under certain conditions, as shown
in Fig. 17. For example, it failed when the hand and face were the same
color and overlapping (column 1), when the hands and face lacked
distinct hand regions (column 2), and when darkness made the hand
almost unrecognizable (column 3). These issues must be addressed in
future work.
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Table 8
Performance tracking for five weeks of five users who received training for the two hand rehabilitation tasks.

Traversing score (%) IoU score (approx. %) in time (s)

Week 1 Week 2 Week 3 Week 4 Week 5 Week 1 Week 2 Week 3 Week 4 Week 5

User 1 20.1 29.5 32.6 45.7 57.9 60 in 5 67 in 5 75 in 3.5 82 in 1.5 87 in 1.5
User 2 35 45.3 50.1 59.2 68.2 61 in 5 70 in 4 81 in 4 83 in 1 83 in 0.5
User 3 33.7 45 54.9 62.1 68.8 70 in 4.5 75 in 3 83 in 3 85 in 3 91 in 1
User 4 27.8 35.7 42.7 51.7 58.8 65 in 6 73 in 3 82 in 1.5 88 in 1 88 in 1
User 5 35.6 38.6 47.5 52.1 57.3 64 in 5.5 70 in 3 86 in 1.5 89 in 1 92 in 1

Mean 30.44 38.82 45.56 54.16 62.20 64 in 5.2 71 in 3.6 81.4 in 2.7 85.4 in 1.5 88.2 in 1
Standard Deviation 5.86 5.95 7.59 5.83 5.17 3.52 in 0.51 2.75 in 0.8 3.61 in 1.03 2.73 in 0.77 3.19 in 0.32
Table 9
Performance tracking for five weeks of five users who received no training for the two hand rehabilitation tasks.

Traversing score (%) IoU score (approx. %) in time (s)

Week 1 Week 2 Week 3 Week 4 Week 5 Week 1 Week 2 Week 3 Week 4 Week 5

User 1 23.2 24.5 25.7 29.6 33.5 58 in 7.5 59 in 8 60 in 5 63 in 5 65 in 4
User 2 30.9 31.3 32.8 35.5 40.1 59 in 8 59 in 7 63 in 6 66 in 6.5 66 in 4
User 3 32.2 32.4 32.9 36.7 41.8 62 in 8 62 in 6 65 in 5 66 in 5 69 in 3
User 4 25.6 26.5 27.5 30.6 37.2 62 in 8.5 62 in 6.5 65 in 5 65 in 3 68 in 3.5
User 5 31.2 31.9 33.1 36.6 40.1 60 in 7 60 in 6 60 in 4.5 63 in 2 65 in 2

Mean 28.62 29.32 30.4 33.8 38.54 60.2 in 7.8 60.4 in 6.7 62.6 in 5.1 64.6 in 4.3 66.6 in 3.3
Standard Deviation 3.55 3.20 3.15 3.06 2.92 1.35 in 0.51 2.24 in 0.75 1.35 in 0.49 1.62 in 1.60 1.59 in 0.75
5.7. Rehabilitation tasks’ assessment

Ten patients aged 25 to 35 with hand and arm mobility issues, were
recruited to interact with the interface. The patients were randomly as-
signed to two groups, with five in each group. Only one group received
training on the tasks. The users gave informed consent to participate in
the study, which IIT Guwahati’s ethics committee approved. The users’
performance was tracked for five weeks for both groups’ traversing and
grabbing tasks, as shown in Tables 8 and 9, respectively. The group
that received training was trained with the interface’s tasks three to
four days a week and was asked to test themselves on one of the
remaining days. However, the group without training was asked to
perform the tasks on any day of the week. The users who received
training improved gradually by performing the rehabilitation tasks, and
most regained normal hand function. Their traversing and IoU scores
in the first week were low, and task completion was slow. However,
by week five, they had significantly improved their scores and time
to completion. The users from the other group who did not receive
training showed minimal improvement in performing their tasks. The
performance of the two groups was compared. The 𝑝-value for travers-
ing scores was 𝑝-valuetraversing scores = 0.045 and the 𝑝-value for IoU
scores was 𝑝-valueIoU scores = 0.012 indicating that consistent training
with the rehabilitation interface resulted in a statistically significant
improvement.

6. Conclusion

We devised an interface for hand rehabilitation that combines re-
habilitation tasks with hand segmentation. For its robust operation,
the segmentation should be efficient and accurate. Therefore, we have
made the following contributions:

- We designed a deep neural network with an attention mechanism
that outputs accurate hand segmentation masks.

- To address the memory requirements of the self-attention mech-
anism, we proposed two efficient attention blocks, the SFAB
and CFAB, to calculate attention in two dimensions–spatial and
channel–that are combined with the encoder–decoder architec-
ture.

- We defined a composite loss function to optimize the model.
- We developed a hand rehabilitation interface comprising two

rehabilitation tasks that helps patients regain normal hand or arm
movement.
12
The qualitative results demonstrate the model’s ability to obtain pre-
cise hand segmentation masks in challenging environments without
prior training. The model also generated masks when two hands were
present. The quantitative results support the model’s segmentation
accuracy and efficiency. It achieves an F1-score of 97.3% and 99.3%
for Ouhands and HGR datasets, respectively. It also performs better
than state-of-the-art methods with higher F1-scores and faster inference
times. The rehabilitation tasks showed their effectiveness by gradually
helping the users regain normal hand mobility.

Future Work: This model needs improvement to segment overlapping
hands and faces or in extremely low illumination. Therefore, we would
work towards localizing the hand in such extreme cases. Hand segmen-
tation capturing the temporal information of a video is another aspect
we would consider for future development of the work. Moreover,
we would incorporate classification with segmentation, increasing the
scope of including more therapeutic activities for hand rehabilitation.
However, real-time implementation would get affected in such cases,
which we would further investigate.
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